学术建模工具
Ⅰ 中学常用的数学建模软件是哪种
几何部分用“几何画板”,确实不错,无论是平面几何还是解析几何,都很实用,尤其是解析几何,可以根据函数解析式绘出函数图像,模拟变量变化过程,有助于提高想象能力,从而提高解题能力。
Ⅱ 论文的研究方法有哪些
1、归纳方法与演绎方法:归纳就是从个别事实中概括出一般性的结论原理;演绎则是从一般性原理、概念引出个别结论。归纳是从个别到一般的方法;演绎是从一般到个别的方法。
门捷列夫使用归纳法,在人们认识大量个别元素的基础上,概括出了化学元素周期律。后来他又从元素周期律预言当时尚未发现的若干个元素的化学性质,使用的就是演绎法。
2、分析方法与综合方法:分析就是把客观对象的整体分为各个部分、方面、特征和因素而加以认识。它是把整体分为部分,把复杂的事物分解为简单的要素分别加以研究的一种思维方法。
分析是达到对事物本质认识的一个必经步骤和必要手段。分析的任务不仅仅是把整体分解为它的组成部分,而且更重要的是透过现象,抓住本质,通过偶然性把握必然性。
3、因果分析法:就是分析现象之间的因果关系,认识问题的产生原因和引起结果的辩证思维方法。使用这种方法一定要注意到真正的内因与结果,而不是似是而非的因果关系。
要注意结果与原因的逆关系,一方面包括“用原因来证明结果”,同时也包括“用结果来推论原因”。不同的事物,一般都一身二任,既是原因,又是结果,而且一个结果往往有不同层次的几个原因。因此,在研究过程中,对所分析的问题必须寻根究底。
4、比较分析法:比较分析法又称类推或类比法。它是对事物或者问题进行区分,以认识其差别、特点和本质的一种辩证逻辑方法。在资料不多,还不足以进行归纳和演绎推理时,比较分析法更具有价值。康德说:“每当理智缺乏可靠论证的思路时,类比这个方法往往能指引我们前进。”
5、定性分析法与定量分析法:就是通过确定事物的质的关系和数量关系以认识问题和分析问题的辩证思维方法。任何事物或任何问题都是质和量的统一,事物的质量。表现为一定的量,又表现为一定的质。
因此,在研究中,只有弄清质的方面,又弄清量的方面,才能找出其中规律性的问题。在研究中,定性分析就是据事论理,划清事物质的界限。定量分析就是对问题的规模、范围、数目等数量关系的情况及变化,进行精确的统计,计算、分析、对比,就是弄清事物发展中量的变化关系。
6、观察法:观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。
7、文献研究法:文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被子广泛用于各种学科研究中。
(2)学术建模工具扩展阅读:
任何一项研究都离不开方法的支撑。没有研究方法的科学研究是不存在的,没有研究方法,其研究就成了无源之水、无本之木,就不是真正的研究。
1、培根用实验法最早发现了热的运动本质;
2、笛卡儿用他提出的直觉——演绎创立了解析几何学;
3、伽利略用实验——数学方法发现了自由落体定律,运用理想实验出现了惯性定律,开创了动力学研究的先河;
4、牛顿用公理化的方法、归纳与演绎的方法完成了经典力学体系;
5、汤姆生、卢瑟福、玻尔等用模型化的方法揭开了物质微观粒子的结构,建立了各种原子结构模型;
6、爱因斯坦运用理想实验方法、演绎方法和各种非理性的直觉、顿悟方法创立了相对论;
7、康德和拉普拉斯运用思辨的方法与假说方法提出了天体演化学说;
8、拉瓦锡用定量方法、理论思维方法创立了氧化学说;
9、凯库勒以基本灵感与想象发现了苯的环状结构式;
10、门捷列夫用分类、比较法发现了元素周期表;
11、海特勒与伦敦等把量子力学的理论引入了化学研究,创立了量子化学。
达尔文用观察法、实验法、分类法、比较法等提出了进化论。从中不难发现,这些物理学、化学、天文学等自然科学领域的研究成果都是通过各种各样的方法来实现的。吴文俊的数学、袁隆平的杂交水稻等最新研究成果也都是采用新的方法取得的,因此,要想做好研究工作,取得一定研究成果,必须使用一定的研究方法。
Ⅲ 数学建模常用软件有哪些哈
Matlab
Mathematica
Maple
lingo
SAS
我用的是Matlab,这个语言较好...
详细介绍:
数学建模软件介绍
一般来说学习数学建模,常用的软件有四种,分别是:matlab、lingo、Mathematica和SAS下面简单介绍一下这四种。
1.MATLAB的概况
MATLAB是矩阵实验室(Matrix Laboratory)之意。除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多.
当前流行的MATLAB 5.3/Simulink 3.0包括拥有数百个内部函数的主包和三十几种工具包(Toolbox).工具包又可以分为功能性工具包和学科工具包.功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能.学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类.开放性使MATLAB广受用户欢迎.除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包.
2.Mathematica的概况
Wolfram Research 是高科技计算机运算( Technical computing )的先趋,由复杂理论的发明者 Stephen Wolfram 成立于1987年,在1988年推出高科技计算机运算软件Mathematica,是一个足以媲美诺贝尔奖的天才产品。Mathematica 是一套整合数字以及符号运算的数学工具软件,提供了全球超过百万的研究人员,工程师,物理学家,分析师以及其它技术专业人员容易使用的顶级科学运算环境。目前已在学术界、电机、机械、化学、土木、信息工程、财务金融、医学、物理、统计、教育出版、OEM 等领域广泛使用。
Mathematica 的特色,具有高阶的演算方法和丰富的数学函数库和庞大的数学知识库,让 Mathematica 5 在线性代数方面的数值运算,例如特征向量、 反矩阵等,皆比Matlab R13做得更快更好,提供业界最精确的数值运算结果。·Mathematica不但可以做数值计算,还提供最优秀的可设计的符号运算。丰富的数学函数库,可以快速的解答微积分、线性代数、微分方程、复变函数、数值分析、机率统计等等问题。Mathematica可以绘制各专业领域专业函数图形,提供丰富的图形表示方法,结果呈现可视化。Mathematica可编排专业的科学论文期刊,让运算与排版在同一环境下完成,提供高品质可编辑的排版公式与表格,屏幕与打印的 自动最佳化排版,组织由初始概念到最后报告的计划,并且对 txt、html、pdf 等格式的输出提供了最好的兼容性。可与 C、C++ 、Fortran、Perl、Visual Basic、以及 Java 结合,提供强大高级语言接口功能,使得程序开发更方便。·Mathematica本身就是一个方便学习的程序语言。 Mathematica提供互动且丰富的帮助功能,让使用者现学现卖。强大的功能,简 单的操作,非常容易学习特点,可以最有效的缩短研发时间。
Ⅳ 试讨论一下哪些种类的软件需要建模
一般来说学习数学建模,常用的软件有四种,分别是:matlab、lingo、Mathematica和SAS下面简单介绍一下这四种。
1.MATLAB的概况
MATLAB是矩阵实验室(Matrix Laboratory)之意。除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处
理,可视化建模仿真和实时控制等功能。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等
语言完相同的事情简捷得多.
当前流行的MATLAB 5.3/Simulink 3.0包括拥有数百个内部函数的主包和三十几种工具包(Toolbox).工具包又可以分为功能性工具
包和学科工具包.功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能.学科工具包是专业性比较强
的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类.
开放性使MATLAB广受用户欢迎.除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改
或加入自己编写程序构造新的专用工具包.
2.Mathematica的概况
Wolfram Research 是高科技计算机运算( Technical computing )的先趋,由复杂理论的发明者 Stephen Wolfram 成立于
1987年,在1988年推出高科技计算机运算软件Mathematica,是一个足以媲美诺贝尔奖的天才产品。Mathematica 是一套整合数字以
及符号运算的数学工具软件,提供了全球超过百万的研究人员,工程师,物理学家,分析师以及其它技术专业人员容易使用的顶级
科学运算环境。目前已在学术界、电机、机械、化学、土木、信息工程、财务金融、医学、物理、统计、教育出版、OEM 等领域广
泛使用。
Ⅳ 数学建模都要用到那些方法啊
随着科学技术的迅速发展,数学模型这个词汇越来越多地出现在现代人的生产、工作和社会活动中。电气工程师必须建立所要控制的生产过程的数学模型,用这个模型对控制装置作出相应的设计和计算,才能实现有效的过程控制;气象工作者为了得到准确的天气预报,一刻也离不开根据气象站、气象卫星汇集的气压、雨量、风速等资料建立的数学模型;生理医学家有了药物浓度在人体内随时间和空间变化的数学模型,就可以分析药物的疗效,有效地指导临床用药;厂长经理们要是能够根据产品的需求状况、生产条件和成本、贮存费用等信息,筹划出一个合理安排生产和销售的数学模型,一定可以获得更大的经济效益。对于广大的科学技术人员和应用数学工作者来说,建立数学模型是沟通摆在面前的实际问题与他们掌握的数学工具之间的一座必不可少的桥梁。
那么,什么是数学模型,又是如何建立起这些形形色色的数学模型的呢?就让我们走近数学模型看一看吧!
原型与模型
原型(Prototype):人们在现实世界里关心、研究或者生产、管理的实际对象。
模型(Model):为特定的目的,将原型的某一部分信息简缩、提炼而构造的原型替代物。
数学模型:对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。
注意数学模型(Mathematical Model)与数学建模(Mathematical Modelling)之间的联系与区别。
建立数学模型的方法
一般说来建立数学模型可以分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型回到现实对象。建立数学模型没有固定的模式。一般这一过程可以如图所示的几个步骤:
数学模型的分类
基于不同的出发点可以有各种不同的分法:
按照模型的应用领域分:如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等。范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等。
按照建立模型的方法分:如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等。
按照模型的表现特性又有几种分法:
确定行模型和随机性模型 取决于是否考虑随机因素的影响。近几年来随着数学的发展,又有所谓突变性模型和模糊性模型。
静态模型和动态模型 取决于是否考虑随机因数引起的变化。
离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散是连续的。
线性模型和连续模型 取决于模型的基本关系,如微分方程是否是的。
按照建模目的分。有描述模型、分析模型、预报模型、优化模型、决策模型、控制模型等。
按照对模型的了解程度分。有所谓白箱模型、灰箱模型、黑箱模型等。它们分别意
味着人们对原型的内在机理了解清楚、不太清楚和不清楚。
数学模型的作用
数学是研究现实世界中的数量关系和空间形式的科学。它的产生和许多重大发展都和现实世界的生产活动和其他相应的学科的需要密切相关的。一般的说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节。
分析 通常是指定量研究现实对象的某种现象,或定量描述某种特性。例如 研究不同种群的生物在同一自然环境下生存时,相互竞争和依存的现象;描述药物浓度在人体内的变化规律以分析药物的疗效。
预报 一般是根据对象的固有特性预测当时间或环境变化时对象的发展规律。人口预报、天气预报以及传染病蔓延高潮时刻的预报可以作为这方面的例子。
决策 其含义很广,譬如根据对象满足的规律作出使某个数量指标达到最优的决策。使经济效益最大的价格策略,使总费用最少的设备维修方案都是这类决策。
控制 一般是指根据对象的特征和某些指标给出尽可能满意的控制方案。例如化工生产过程中温度和流量的控制,利用红绿灯对交流进行控制等
数学建模(mathematical modelling)
数学建模是构造刻划客观事物原型的数学模型并用析究和解决实际问题的种方法。运用这种科学方法,建模者必须从实际问题出发,遵循“实践――认识――实践”的辨证唯物主义认识规律,紧紧围绕着建模的目的,运用观察力、想象力和逻辑思维,对问题进行抽象、简化,反复探索、逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。因此,数学建模不仅仅是一种定量解决实际问题的科学方法,而且还是一种从无到有的创新活动过程。当代计算机的发展和广泛应用,使得数学模型的方法如虎添翼,加速了数学向各个学科的渗透,产生了众多的边缘学科。当今几乎所有重要的学科,只要在其名称前面或后面加上“数学”或“计算”二字,就成了现有的一种国际学术杂志名称。这表明各学科正在利用数学方法和数学成果来加速本学科的发展。就连计算机本身的产生和进步也是强烈地依赖于数学科学的发展,而计算机软件技术说到底也是数学技术。
引用绝对吓人的文字
Ⅵ 制造航空模型需要什么学术储备
1,你需要买一套遥控设备,比如天地飞6和它的搭配接收机,这些大约300元
2,你需要买一个涵道风扇,并且需要和它搭配的舵机,还有电子调速器(简称电调),约300元
3,你需要到广告店或着网络上买大约2平方米的KT泡沫板,并且再配1-2瓶泡沫胶,约80元
4,再买3-5个航模舵机(规格是9克舵机),和与这个舵机配套的舵机拉杆和舵角
4,买小刀、纤维胶带、热熔胶枪和热熔胶条,可以在泡沫板上画线的笔等辅助加工工具,约50元。
其他的,只剩下你设计图纸,按图纸在在KT板上画出,用小刀裁剪,按设计的顺序和位置组装就可以了。精细部位用泡沫胶粘接,粗糙部位和受力比较大的部位用热熔胶粘接,希望能帮到你~
Ⅶ 全国大学生数学建模大赛中,负责建模的同学,负责编程的同学,负责写作的同学分别需要学哪些软件看哪些书
综合类学科竞赛: 全国大学生数学竞赛 "挑战杯"大学生课外学术科技作品竞赛 全国大学生英语竞赛全国大学校院学生创意实作竞赛 “CCTV杯”全国英语演讲大赛课余生活竞赛:全大学生DV影像艺术竞赛 全国大学生街舞 挑战赛 全国大学生智能汽车邀请赛 大学生多媒体作品设计大赛 中国大学生数码媒体艺术大赛 中国大学生在线暑假影像大赛 全国大学生歌唱比赛理科专业竞赛:全国大学生数学建模竞赛 全国大学生力学竞赛 大学生程序设计大赛 全国大学生结构设计大赛 大学生机电产品创新设计竞赛 全国大学生电子设计竞赛全国大学生过程控制仿真挑战赛 全国大学生电工数学建模竞赛 全国大学生机器人大赛 ACM国际编程大赛 SCILAB自由软件编程竞赛一些竞赛简介:数学建模竞赛;这个比赛就包含很多层次:全国大学生数学建模竞赛,美国大学生数学建模竞赛、苏北数学建模竞赛,还有各类院校级数学建模竞赛;比赛的形式是以三名同学为一组,用三天时间去解决一个问题,这个问题并不是简单的数学题,很多会和社会实际问题相关,也可能涉及某些专业难题。所以不要以为数学建模竞赛是要考察数学能力,实际上是在考察解决问题的能力。挑战杯;挑战杯分为“中国大学生创业计划竞赛”和“全国大学生系列科技学术竞赛”两种竞赛,这两类竞赛会交叉轮流举办,一般作品的征集时间是从前一年的11月份到次年的3月份。全国大学生电子设计大赛;这类比赛会比较适合电类学生参加,电子设计大赛的形式也是给出题目,参赛者有四天三夜的时间解决问题,题目大致可以分为:控制类、测量类、高频类以及电力电子类。该竞赛会在单数年的9月份举行。全国大学生英语竞赛;全国大学生英语竞赛分成ABCD四类,A类是针对研究生,B类针对英语专业的学生,C类针对非英语专业的本科生,D类面向艺术和体育生。比赛会分成初赛和决赛两轮,初赛在四月中旬,决赛在五月中旬,比赛形式是笔试和听力。全国英语演讲大赛;这个大赛大家可能之前在电视上有看到过,比赛有初赛、复赛、决赛三轮,比赛形式有定题演讲、即兴演讲和回答问题。全国大学生数学竞赛;这个竞赛就是纯考数学啦,建议在大一或大二的时候参加,再往后不学数学的时间太长了,再熟悉起来一些数学知识会比较费力。除了以上的几种竞赛外,每个专业也会有不同的大型竞赛,比如:飞思卡尔杯,机器人大赛等,感兴趣的话多和学长学姐还有老师交流,会有很大收获的。
Ⅷ 论文里的模型是什么意思
古典文学常见论文一词,谓交谈辞章或交流思想。到了现当代,论文常指用来进行科学研究和描述科研成果的文章,简称之为论文。它既是探讨问题进行科学研究的一种手段,又是描述科研成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等,总称为论文。
论文怎么写
一、标题
标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。毕业论文的标题一般分为总标题、副标题、分标题几种。
(一)总标题
总标题是文章总体内容的体现。常见的写法有:
①揭示课题的实质。这种形式的标题,高度概括全文内容,往往就是文章的中心论点。它具有高度的明确性,便于读者把握全文内容的核心。诸如此类的标题很多,也很普遍。如《关于经济体制的模式问题》、《经济中心论》、《县级行政机构改革之我见》等。
②提问式。这类标题用设问句的方式,隐去要回答的内容,实际上作者的观点是十分明确的,只不过语意婉转,需要读者加以思考罢了。这种形式的标题因其观点含蓄,容易激起读者的注意。如《家庭联产承包制就是单干吗?》、《商品经济等同于资本主义经济吗?》等。
②交代内容范围。这种形式的标题,从其本身的角度看,看不出作者所指的观点,只是对文章内容的范围做出限定。拟定这种标题,一方面是文章的主要论点难以用一句简短的话加以归纳;另一方面,交代文章内容的范围,可引起同仁读者的注意,以求引起共鸣。这种形式的标题也较普遍。如《试论我国农村的双层经营体制》、《正确处理中央和地方、条条与块块的关系》、《战后西方贸易自由化剖析》等。
④用判断句式。这种形式的标题给予全文内容的限定,可伸可缩,具有很大的灵活性。文章研究对象是具体的,面较小,但引申的思想又须有很强的概括性,面较宽。这种从小处着眼,大处着手的标题,有利于科学思维和科学研究的拓展。如《从乡镇企业的兴起看中国农村的希望之光》、《科技进步与农业经济》、《从“劳动创造了美”看美的本质》等。
⑤用形象化的语句。如《激励人心的管理体制》、《科技史上的曙光》、《普照之光的理论》等。
标题的样式还有多种,作者可以在实践中大胆创新。
(二)副标题和分标题
为了点明论文的研究对象、研究内容、研究目的,对总标题加以补充、解说,有的论文还可以加副标题。特别是一些商榷性的论文,一般都有一个副标题,如在总标题下方,添上“与××商榷”之类的副标题。
另外,为了强调论文所研究的某个侧重面,也可以加副标题。如《如何看待现阶段劳动报酬的差别——也谈按劳分配中的资产阶级权利》、《开发蛋白质资源,提高蛋白质利用效率——探讨解决吃饭问题的一种发展战略》等。
设置分标题的主要目的是为了清晰地显示文章的层次。有的用文字,一般都把本层次的中心内容昭然其上;也有的用数码,仅标明“一、二、三”等的顺序,起承上启下的作用。需要注意的是:无论采用哪种形式,都要紧扣所属层次的内容,以及上文与下文的联系紧密性。
对于标题的要求,概括起来有三点:一要明确。要能够揭示论题范围或论点,使人看了标题便知晓文章的大体轮廓、所论述的主要内容以及作者的写作意图,而不能似是而非,藏头露尾,与读者捉迷藏。二要简炼。.论文的标题不宜过长,过长了容易使人产生烦琐和累赘的感觉,得不到鲜明的印象,从而影响对文章的总体评价。标题也不能过于抽象、空洞,标题中不能采用非常用的或生造的词汇,以免使读者一见标题就如堕烟海,百思不得其解,待看完全文后才知标题的哗众取宠之意。三要新颖。标题和文章的内容、形式一样,应有自己的独特之处。做到既不标新立异,又不落案臼,使之引人入胜,赏心悦目,从而激起读者的阅读兴趣。
二、目录
一般说来,篇幅较长的毕业论文,都没有分标题。设置分标题的论文,因其内容的层次较多,整个理论体系较庞大、复杂,故通常设目录。
设置目录的目的主要是:
1.使读者能够在阅读该论文之前对全文的内容、结构有一个大致的了解,以便读者决定是读还是不读,是精读还是略读等。
2.为读者选读论文中的某个分论点时提供方便。长篇论文,除中心论点外,还有许多分论点。当读者需要进一步了解某个分论点时,就可以依靠目录而节省时间。
目录一般放置在论文正文的前面,因而是论文的导读图。要使目录真正起到导读图的作用,必须注意:
1.准确。目录必须与全文的纲目相一致。也就是说,本文的标题、分标题与目录存在着一一对应的关系。
2.清楚无误。目录应逐一标注该行目录在正文中的页码。标注页码必须清楚无误。
3.完整。目录既然是论文的导读图,因而必然要求具有完整性。也就是要求文章的各项内容,都应在目录中反映出来,不得遗漏。
目录有两种基本类型:
1.用文字表示的目录。
2.用数码表示的目录。这种目录较少见。但长篇大论,便于读者阅读,也有采用这种方式的。
三、内容提要
内容提要是全文内容的缩影。在这里,作者以极经济的笔墨,勾画出全文的整体面目;提出主要论点、揭示论文的研究成果、简要叙述全文的框架结构。
内容提要是正文的附属部分,一般放置在论文的篇首。
写作内容提要的目的在于:
1.为了使指导老师在未审阅论文全文时,先对文章的主要内容有个大体上的了解,知道研究所取得的主要成果,研究的主要逻辑顺序。
2.为了使其他读者通过阅读内容提要,就能大略了解作者所研究的问题,如果产生共鸣,则再进一步阅读全文。在这里,内容提要成了把论文推荐给众多读者的“广告”。
因此,内容提要应把论文的主要观点提示出来,便于读者一看就能了解论文内容的要点。论文提要要求写得简明而又全面,不要罗哩罗嗦抓不住要点或者只是干巴巴的几条筋,缺乏说明观点的材料。
内容提要可分为报道性提要和指示性提要。
报道性提要,主要介绍研究的主要方法与成果以及成果分析等,对文章内容的提示较全面。
指示性提要,只简要地叙述研究的成果(数据、看法、意见、结论等),对研究手段、方法、过程等均不涉及。毕业论文一般使用指示性提要。举例如下:
●市场经济条件下的政府,固然应服从上级规划部署的全局,但主要的着眼点应放在对下负责,对本地的经济发展,对本地的人民生活水平提高负责,这才是发展全局经济的前提,从而也自然在根本上符合对上负责。
●变部门“齐抓共管”企业为共同服务于企业,应成为部门工作的主要重点。(摘自《政府在市场经济中
如何定位》一文的内容提要)
内容提要的写作要求可以概括为“全、精、简、实、活”。具体说来:
1.内容提要要求具有完整性。即不能把论文中所阐述的主要内容(或观点)遗漏。提要应写成一篇完整的短文,可以独立使用。
2.重点要突出。内容提要须突出论文的研究成果(或中心论点)和结论性意义的内容,其他各项可写得简明扼要。
3.文字要简炼。内容提要的写作必须字斟句酌,用精练、概括的语言表述,每项内容不宜展开论证说明。
4.陈述要客观。内容提要一般只写课题研究的客观情况,对工作过程、工作方法以及研究成果等,不宜作主观评价,也不宜与别人的研究作对比说明。一项研究成果的价值,自有公论,大可不必自我宣扬。因而,实事求是也是写作内容提要的基本原则。
5.语言要生动。提要既要写得简明扼要,又要生动活泼,引人入胜,在词语润色、表达方法和章法结构上要尽可能体现文彩,以求唤起读者阅读正文的欲望。
四、正文
正文包括绪论、本论、结论三部分。这是毕业论文最重要的组成部分,其它章节有专门详细论述,这里不再重复。
五、参考文献
参考文献又叫参考书目,它是指作者在撰写毕业论文过程中所查阅参考过的著作和报刊杂志,它应列在毕业论文的末尾。列出参考文献有三个好处:一是当作者本人发现引文有差错时,便于查找校正。二是可以使毕业论文答辩委员会的教师了解学生阅读资料的广度,作为审查毕业论文的一种参考依据。三是便于研究同类问题的读者查阅相关的观点和材料。
当然,论文所列的参考文献必须是主要的,与本论文密切相关的,对自己写成毕业论文起过重要参考作用的专著、论文及其它资料。不要轻重不分,开列过多。
列出的参考文献一般要写清书名或篇名、作者、出版者和出版年份。
Ⅸ 数学建模最常用的,最好用的软件是什么呀
数学建模介绍
1. 什么是数学建模?
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象
比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物
理学家,生物学家,经济学家甚至心理学家等等的过程。
2. 什么是数学模型?
数学模型是指用数学语言描述了的实际事物或现象。它一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物
的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等
等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是
数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际
物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
3. 为什么要建立数学模型?
在科学领域中,数学因为其众所周知的准确而成为研究者们最广泛用于交流的语言--因为他们普遍相信,自然是严格地演化
着的,尽管控制演化的规律可以很复杂甚至是混沌的。因此,人们常对实际事物建立种种数学模型以期通过对该模型的考察来描述
解释,预计或分析出与实际事物相关的规律。
top
数学建模软件介绍
一般来说学习数学建模,常用的软件有四种,分别是:matlab、lingo、Mathematica和SAS下面简单介绍一下这四种。
1.MATLAB的概况
MATLAB是矩阵实验室(Matrix Laboratory)之意。除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处
理,可视化建模仿真和实时控制等功能。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等
语言完相同的事情简捷得多.
当前流行的MATLAB 5.3/Simulink 3.0包括拥有数百个内部函数的主包和三十几种工具包(Toolbox).工具包又可以分为功能性工具
包和学科工具包.功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能.学科工具包是专业性比较强
的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类.
开放性使MATLAB广受用户欢迎.除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改
或加入自己编写程序构造新的专用工具包.
2.Mathematica的概况
Wolfram Research 是高科技计算机运算( Technical computing )的先趋,由复杂理论的发明者 Stephen Wolfram 成立于
1987年,在1988年推出高科技计算机运算软件Mathematica,是一个足以媲美诺贝尔奖的天才产品。Mathematica 是一套整合数字以
及符号运算的数学工具软件,提供了全球超过百万的研究人员,工程师,物理学家,分析师以及其它技术专业人员容易使用的顶级
科学运算环境。目前已在学术界、电机、机械、化学、土木、信息工程、财务金融、医学、物理、统计、教育出版、OEM 等领域广
泛使用。
Mathematica 的特色
·具有高阶的演算方法和丰富的数学函数库和庞大的数学知识库,让 Mathematica 5 在线性代数方面的数值运算,例如特征向量、 反矩阵等,皆比Matlab R13做得更快更好,提供业界最精确的数值运算结果。
·Mathematica不但可以做数值计算,还提供最优秀的可设计的符号运算。
·丰富的数学函数库,可以快速的解答微积分、线性代数、微分方程、复变函数、数值分析、机率统计等等问题。
·Mathematica可以绘制各专业领域专业函数图形,提供丰富的图形表示方法,结果呈现可视化。
·Mathematica可编排专业的科学论文期刊,让运算与排版在同一环境下完成,提供高品质可编辑的排版公式与表格,屏幕与打印的 自动最佳化排版,组织由初始概念到最后报告的计划,并且对 txt、html、pdf 等格式的输出提供了最好的兼容性。
·可与 C、C++ 、Fortran、Perl、Visual Basic、以及 Java 结合,提供强大高级语言接口功能,使得程序开发更方便。
·Mathematica本身就是一个方便学习的程序语言。 Mathematica提供互动且丰富的帮助功能,让使用者现学现卖。强大的功能,简 单的操作,非常容易学习特点,可以最有效的缩短研发时间。
3.lingo的概况
LINGO则用于求解非线性规划(NLP—NON—LINEAR PROGRAMMING)和二次规则(QP—QUARATIC PROGRAMING)其中
LINGO 6.0学生版最多可版最多达300个变量和150个约束的规则问题,其标准版的求解能力亦再10^4量级以上。虽然LINDO和
LINGO不能直接求解目标规划问题,但用序贯式算法可分解成一个个LINDO和LINGO能解决的规划问题。
模型建立语言和求解引擎的整合
LINGO是使建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。LINGO提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。
■ 简单的模型表示
LINGO可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修改。
■ 方便的数据输入和输出选择
LINGO建立的模型可以直接从数据库或工作表获取资料。同样地, LINGO可以将求解结果直接输出到数据库或工作表。
■ 强大的求解引擎
LINGO内建的求解引擎有线性、非线性(convex and nonconvex)、二次、二次限制和整数最佳化。
■ Model Interactively or Create Turn-key Applications
LINGO提供完全互动的环境供您建立、求解和分析模型。LINGO也提供DLL和OLE界面可供使用者由撰写的程序中呼叫。
■ 广泛的文件和HELP功能
LINGO提供的所有工具和文件可使你迅速入门和上手。LINGO使用者手册有详细的功能定义。
4.SAS软件概况
SAS系统全称为Statistics Analysis System,最早由北卡罗来纳大学的两位生物统计学研究生编制,并于1976年成立了SAS软件研究所,正式推出了SAS软件。SAS是用于决策支持的大型集成信息系统,但该软件系统最早的功能限于统计分析,至今,统计分析功能也仍是它的重要组成部分和核心功能。SAS现在的版本为9.0版,大小约为1G。经过多年的发展,SAS已被全世界120多个国家和地区的近三万家机构所采用,直接用户则超过三百万人,遍及金融、医药卫生、生产、运输、通讯、政府和教育科研等领域。在英美等国,能熟练使用SAS进行统计分析是许多公司和科研机构选材的条件之一。在数据处理和统计分析领域,SAS系统被誉为国际上的标准软件系统,并在96~97年度被评选为建立数据库的首选产品。堪称统计软件界的巨无霸。在此仅举一例如下:在以苛刻严格著称于世的美国FDA新药审批程序中,新药试验结果的统计分析规定只能用SAS进行,其他软件的计算结果一律无效!哪怕只是简单的均数和标准差也不行!由此可见SAS的权威地位。
SAS系统是一个组合软件系统,它由多个功能模块组合而成,其基本部分是BAS