高二生物提纲
㈠ 高二生物提纲
高二(上)生物复习提要
绪言
生物的6个基本特征有: 有共同的物质基础和结构基础(有严整的结构),都有新陈代谢,都有应激性,都有生长、发育、生殖现象,都有遗传和变异的特性,都能适应一定和环境和影响环境
生物与非生物的最基本区别,生物的最基本的特征是 新陈代谢,生物科学发展的三个阶段是 描述性生物学阶段、实验生物学阶段、分子生物学阶段,生物发展的两个方向是 宏观方面、微观方面,其中微观方面已经从细胞水平发展到分子水平。
第一章 生命的物质基础
大量元素:C、H、O、N、P、S、K、Ca等
微量元素:Fe 、Mn 、Zn 、Cu 、B、Mo等
生物界与非生物界是统一的:组成生物界的元素都可以在自然界找到,没有一种元素是生物界所特有的,他们的差异性表现在:组成生物体的元素,在生物体内与在无机自然界中的含量相差很大,原生质是指:细胞内的有生命物质,它分化为 细胞膜、细胞核、细胞质,代谢越旺盛,自由水的比例越大,活细胞内最多的化合物一般是水,干细胞最多的化合物一般是蛋白质,无机盐可维持细胞的渗透压和酸碱平衡,血液中钙盐含量太低,就会抽搐。
主要的能源物质是 糖类,储存能量的主要物质是脂肪,体现生命的主要物质是 蛋白质,单糖有葡萄糖、核糖、脱氧核糖、果糖、半乳糖等,动物特有的糖是 半乳糖(单糖)、乳糖(二糖)、糖元(三糖),植物特有的糖是果糖(单糖)、蔗糖、麦芽糖(二糖)淀粉、纤维素(多糖),动物最重要的多糖是 糖元,植物最重要的多糖是 淀粉 、纤维素 ,动物、植物共有的糖:葡萄糖、核糖、脱氧核糖。
胆固醇、性激素、维生素D属于 固醇,脂类(由C、H、O三种元素组成)包括 脂肪、类脂、固醇3种。
有机物 元素组成 功能
糖类 C、H、O 是生物体进行生命活动的主要能源物质
脂质 C、H、O(N、P)注:脂肪只含C、H、O 脂质中的脂肪主要是生命体内储存能量的物质,此外,动物体内的脂肪还具有保温、减少摩擦和缓冲压力作用;类脂中的磷脂是生物膜成分;固醇类物质调节生物体的新陈代谢和生殖
蛋白质 C、H、O、N(主) 是细胞和生物体的组成成分;具催化、运输、调节、免疫等作用,是一切生命活动的体现者
核酸 C、H、O、N、P 是一切生命的遗传物质
氨基酸的通式 ,肽键通式 ,某蛋白质分子有氨基酸n个,由x条肽链组成,氨基酸的平均分子量是128,问在形成此蛋白质过程中脱水数目和肽键数目: n -x (氨基酸的数目— 肽链的数目=肽键的数目=脱去的水分子数)。此蛋白质的分子量是 128n-18(n-x), 蛋白质的特性由哪些方面的不同引起:氨基酸是种类不同,数目多、排列次序变化多端,肽链的空间结构差别大 核酸存在于 细胞核 和 细胞质 ,肯定含N的化合物有 蛋白质 、核酸等 ,另外固醇也含N,肯定含P的化合物有磷脂、核酸 、ATP等 ,只含C、H、O的化合物有糖类 、脂肪。
还原性的糖遇斐林试剂(0.1g/mL的NaOH和0.05g/mL的CuSO4)可以产生砖红色沉淀Cu2O。注:斐林试剂混合均匀后再使用。脂肪遇苏丹3染成橘黄色。蛋白质遇双缩尿试剂(0.1g/mL的NaOH和0.01g/mL的CuSO4)变成紫色。
第二章 生命活动的基本单位----细胞
除病毒外,生物的基本结构单位和功能单位是细胞,酵母菌、霉菌类、衣藻、蘑菇类属于真核生物,细菌、蓝藻、支原体、立克次氏体属于 原 核生物,有核糖体没有高等细胞器。细胞膜是单层膜,主要成分是 磷脂 和 蛋白质 细胞膜的机构特点是具有流动性,细胞的功能特点是具有选择透过性,细胞膜上的 糖蛋白(糖被)具有识别作用,物质进出细胞膜的方式主要有自由扩散、主动运输 ,
方式/项目 浓度 载体 能量 实例
自由扩散 高到低 不需 不需要细胞代谢释放的能量(ATP) 水、O2、CO2、甘油、乙醇、苯等
主动运输 低到高 需要 细胞代谢释放的能量(ATP) 带电的离子、氨基酸、葡萄糖、尿素等
单层膜的细胞器有内质网、高尔基体、液泡、溶酶体,双层膜的细胞器有 叶绿体 、 线粒体 ,另外,具有双层膜的细胞结构还有 核膜 ,无膜的细胞器有 核糖体、中心体 ,具有中心体的生物有 动物和低等植物细胞,与能量的转化有关的细胞器是叶绿体、线粒体,线粒体是 有氧呼吸的中心,它的数目与细胞能量代谢的水平有关,核糖体主要功能是 合成蛋白质 。动、植物都有但功能不同的细胞器是高尔基体 ,可以产生水的细胞器是;叶绿体、线粒体、核糖体。 核 孔可以通过RNA,染色体(质)由 DNA 和蛋白质组成,细胞核是 遗传物质储存和复制的场所,是 细胞遗传特性和细胞代谢活动的控制中心,细胞代谢的主要场所是细胞质基质,真核细胞和原核细胞最重要的区别是是否具有 核膜 ,原核生物的细胞壁成分是肽聚糖(蛋白质与糖类的聚合物)。
真 细胞壁(膜)
核 细胞质基质
细 细胞质
胞 细胞器
细胞核
细胞增殖(有丝分裂、无丝分裂、和减数分裂)的最主要方式是 有丝分裂,细胞周期概念:连续分裂的细胞,从一次分裂 完成 开始,到下一次分裂 完成 为止。间期最大特点是完成 DNA分子的复制和有关蛋白质的合成 , 前 期与 末 期相反,这两个时期的2消失2出现分别是 前期核仁、核膜消失,出现纺锤体和染色体 ,赤道板和细胞板的区别: 赤道板是一个位置名称,而细胞板则是出现在植物细胞赤道板的一个结构,计算观察染色体的最佳时期是 中期 ,一般来说,动、植物有丝分裂的不同点在: 前 期的 纺锤体的形成 (植物细胞由纺锤丝形成纺锤体,动物细胞由星射线形成纺锤体)不同和 末 期的 分裂形成子细胞的方式(细胞质的分裂方式)不同,一定存在的不同点是 后者,因为 低等植物细胞也有中心体,由星射线形成纺锤体 有丝分裂的间期分为 G1 期(DNA合成前期)、 S 期(DNA合成期)和 G2 期(DNA合成后期),这三个时期的特点是合成了RNA 、酶、一些蛋白质, DNA复制加倍、合成一些组蛋白 , DNA合成终止、合成一些RNA 。有丝分裂的意义:通过 间期亲代染色体的复制 和 后期染色体精确地平均分配到两个子细胞中 保证了亲子代遗传性状的稳定性。蛙的红细胞进行 无丝分裂,人的成熟红细胞 无细胞核,不能进行分裂。
细胞分化发生在整个生命过程,但在胚胎时期达到最大限度。心脏细胞有 合成胰岛素的基因,有性染色体。高度特化的动物细胞,从整个细胞来说,它的全能性受到限制,但它的细胞核仍然保持全能性,因为细胞核有 保持物种遗传性所需要的全套遗传物质 ,癌细胞的形态畸变,细胞粘着性小,能无限增殖,衰老细胞的水分减少,代谢减慢,酶活性 降低,色素积累,呼吸速度减慢,细胞核体积增大,细胞膜通透性功能改变,物质运输功能降低,染色质固缩,染色 加深。
第三章 生物的新陈代谢
酶(活细胞都能产生酶)多数是蛋白质,少数是RNA ,有生物催化剂的功能。酶的特性有高效性、专一性、多样性、易受温度、pH值影响等,酶的命名一般根据功能命名,ATP中文名三磷酸腺苷(腺三磷),结构式简写 ,所有生命活动的能量直接来自 ATP,由ADP合成ATP 所需能量,动物来自 呼吸作用放能和磷酸肌酸的能量转移 ,植物来自 呼吸作用 、光合作用 ,ATP在细胞的叶绿体或线粒体细胞器中和在 细胞质 基质中合成。在细胞内ATP含量很少,转化十分迅速,叶绿体色素吸收可见光,主要吸收 蓝紫光 光和 红橙光,(叶绿素a和叶绿素b主要吸收蓝紫光和红橙光,胡萝卜素和叶黄素主要吸收蓝紫光),光反应的场所是叶绿体的囊状结构上(基粒上/基粒片层上),(因为所有色素和所有光反应的酶都在囊状结构上),原料是水 ,动力是光,产物是O2 、[H] 、ATP ,暗反应场所是 叶绿体基质 ,原料是 CO2 ,动力是 [H]和ATP ,产物是 糖类等有机物(包括脂肪、氨基酸等) ,光反应为暗反应提供 [H]、ATP ,暗反映为光反映中的水反映提供了:ADP、Pi。CO2被还原前先要进行 二氧化碳的固定 ,C3化合物一部分 被 还原成糖类 ,另一部分又变成 C5 。自然界最基本的物质、能量代谢是 光合作用 ,光合作用产生的氧气来自 水 ,有机物中的O来自 CO2 ,光合作用的意义:1.制造有机物,固定太阳能,为其他生物提供物质和能量需要,2.制造氧气,维持O2 与CO2的平衡,使好氧生物得以发展3.形成O3层,使生物由水生向陆生进化。
干燥种子和根尖细胞主要靠 吸胀 作用吸水(蛋白质、淀粉、纤维素等亲水物质吸水),形成 中央液泡 的成熟植物细胞通过 渗透 作用吸水。一个渗透系统必须具备 半透膜(玻璃纸、蚕豆的种皮、动物的膀胱膜) ,它要发生渗透作用还必须 在半透膜两侧的溶液存在浓度差 。植物细胞的原生质层包括 细胞膜 、液泡膜 、这两层膜之间的细胞质 ,植物是否吸水决定于 细胞液浓度是否大于外界溶液浓度 ,植物吸收的水分多数用于 蒸腾作用 ,蒸腾作用的意义是促进 水分的吸收和向上运输、促进矿质元素向上运输 ,降低 叶片 温度,矿质元素指除 C 、 H 、O 外,由根从土中吸收的元素,大量元素有 N、P、S、K、Ca、Mg ,微量元素有 Zn、Mo、Cl、Cu、Fe、Mn、B 。同样条件下,吸收水和吸收矿质元素的量往往不同,原因是 两者的吸收原理不同,水分的吸收是由渗透作用引起的,而吸收矿质元素是一个主动运输的过程,它们是两个相对独立的过程。如果使用呼吸抑制剂,植物吸收矿质元素速度将 降低 ,可见这是 主动运输 过程。植物吸收矿质元素的数量和种类主要由 该植物细胞膜上的载体的种类和数量 决定的。可以从老叶转移到新叶的元素有 N 、P 、K 、Mg ,不能转移的元素有 Ca 、Fe ,农民常用 松土 的方法促进植物吸收矿质元素,植物受水浸的危害是 根部缺氧,有氧呼吸作用受阻,影响对矿质元素的吸收,(无氧呼吸产生的物质毒害植物) ,无土栽培的营养液需要通气是因为 促进植物根部的有氧呼吸,提供足够的ATP,促进矿质元素的吸收 ,用一瓶溶液培养植物,溶液浓度往往会不断增加,原因是 植物蒸腾作用散失过多的水分,使溶液浓度过大 ,补救措施是 及时地加入适量的清水 。矿质元素的用途:1、N促进细胞分裂和生长,使枯叶繁茂,缺N则植株矮小,叶片发黄。2、P使果实和种子提高成熟。缺P则植株矮小,叶片暗绿。3、K使茎秆健壮,促进淀粉的形成。缺K则倒扶。4、B促进花粉的萌发和花粉管的伸长,缺B花而不实。5、Fe是构成血红蛋白的重要元素。6、Mg合成叶绿素。7、Zn是构成人体100多种酶的元素,如果缺Zn,则儿童会厌食、生长发育不良,长期缺Zn,还会引起智力低下。8、缺Na,则肌肉无力。9、缺Ca,不仅肌肉会抽搐,长期缺Ca,儿童会得佝偻病。10、I是合成甲状腺激素的原料。
人的血糖的来源主要有 消化和吸收食物中的糖类物质 、 肝糖元的分解 、 由非糖物质转变而来 ,脂肪以脂肪酸和甘油的形式被吸收后,在人体主要再度合成 脂肪 ,然后1. 储存在皮下结缔组织、肠系膜等处 ,2.再分解成 甘油 和 脂肪酸 ,一部分 氧化分解成CO2、H2O和能量 ,一部转变成糖元等,血液中的氨基酸的来源有 消化和吸收食物中的蛋白质 、 由体内的蛋白质分解而来 、通过氨基转换形成新的氨基酸 ,如何抢救轻度和重度的低血糖患者 轻的喝浓糖水 、 严重的静脉输入葡萄糖溶液 ,肝脏中多余的脂肪要合成 脂蛋白 ,然后转运出去, 磷脂 是合成脂蛋白的原料,不足可引起脂肪肝。胰岛素分泌过多会引起人困倦打瞌睡的原因是 使血糖浓度过低,引起供能不足,降低神经的兴奋性 ,人体的体液由 细胞内液 和 细胞外液 组成,其中 细胞内液 较多。细胞外液 构成人体的内环境,它主要包括 组织液 、血浆 、淋巴液 ,
人血糖的正常浓度是80—120mg/dL, 空腹 时,血糖含量超过 130 mg/dL 叫高血糖,血糖含量高于160——180 mg/dL (肾糖阈)时,一部分葡萄糖将随尿排出,叫 尿糖 。呼吸作用的本质是分解 有机物 ,释放 能量 , 不一定需要氧气,分为有氧呼吸和无氧呼吸两种。有氧呼吸的反应式: C6H12O6 + 6H2O + 6O2→ 6CO2 + 12H2O +能量 ,第一阶段在 细胞质基质 进行,原料是 C6H12O6 ,产物是 丙酮酸 、少量[H] 、少量能量 ,第二阶段在 线粒体内 进行,原料是 丙酮酸 和 H2O ,产物是 CO2 、 少量[H] 、少量能量,第三阶段在线粒体内 进行,原料是 O2 和 前两阶段产生的[H] ,产物是 H2O 、 大量能量 ,1MOL葡萄糖有氧呼吸产生能量 2870 KJ,可用于生命活动的有 1161 KJ( 38 个ATP),以热能散失 1709 KJ,无氧呼吸产生的可利用能量是 61.08 KJ( 2 个ATP),写出2条无氧呼吸反应式 C6H12O6 →2C2H5OH(酒精)+2CO2 + 能量 、 C6H12O6 → 2C3H6O3(乳酸) + 能量 ,无氧呼吸的场所是 细胞质基质 ,分 两 个阶段,第一个阶段与有氧呼吸的相同,是由 葡萄糖 分解为 丙酮酸 ,第二阶段的反应是 丙酮酸 分解成 酒精和CO2或转化为乳酸。新陈代谢分 同化 作用( 合成 代谢)和 异化 作用( 分解 代谢)同化作用有2种类型 自养型 、 异养型 ,其区别依据是:是否能 将无机物合成有机物 ,异化作用有2种类型 需氧型 、厌氧型 ,酵母菌的异化作用类型是 兼性厌氧型 ,描述一种生物的代谢类型要同时写出它的同化类型和异化类型。
植物的生长素和人的生长激素的共同点是含量 少 作用 大 ,不同点是人的激素是由专门的内分泌腺分泌的,而植物激素是在生长旺盛的器官产生的。植物茎的生长素产生部位和发生极性转移的部位都在 尖端 ,发生作用的部位在 尖端下面的部位 ,植物生长素作用的规律是在 低浓度 时促进植物生长,而在浓度过高 时抑制生长,生长素还有促进 扦插枝条生根 、促进 果实发育 、防止 落花落果 的作用。植物生长素的运输方式属于 主动 运输,修剪果树、棉花摘顶是为了去除 顶端优势 ,促进 侧芽 发育,提高产量。人的生长激素、甲状腺激素、促××激素、雄性激素、雌性激素、促××释放激素由 垂体 、甲状腺 、垂体 、 睾丸 、卵巢 、下丘脑 分泌产生。 下丘脑 是人体调节内分泌活动的枢纽。人的生长激素和甲状腺激素表现为 协同 作用,胰岛素和胰高血糖素表现为 拮抗 作用。胰岛素调节糖代谢的作用有促进血糖进入肝脏、肌肉、脂肪组织等细胞,并在这些细胞中合成为糖元 、氧化分解或转化为脂肪,,并抑制 肝糖元的分解和非糖物质转化为葡萄糖,从而 降低 血糖浓度,胰高血糖素则相反。CO2是调节呼吸的有效生理刺激。人体的调节包括体液调节和神经调节,以 神经 调节为主。神经调节的基本方式是 反射 ,完成反射的神经结构叫 反射弧 ,它的5部分是 感受器、传入神经纤维 、神经中枢、传出神经纤维、效应器 。组成神经系统的单位是神经细胞(神经元),神经元包括细胞体和突起两部分,其中突起又分为 树突 和 轴突,轴突和长的树突以及套在其外面的髓鞘组成神经纤维,神经纤维末端的细小分枝叫 神经末梢 ,许多神经纤维集结成束,外面包裹着结缔组织膜,就成为一条 神经 ,神经元的细胞体主要集中在由 脑 和 脊髓 组成的 中枢 神经系统里,神经元的突起部分形成 脑 神经和 脊 神经,脑神经和脊神经组成周围神经系统。神经细胞静息时的电位是 外 正 内 负,神经细胞的某个部位受到刺激后将在受刺激点的两侧形成的局部电流(兴奋),这个局部电流又引起临近部位产生兴奋,这样,兴奋就沿两个方向传递开去,而兴奋在神经细胞之间是通过 突触 传递的。突触由 突触前膜 、突触间隙 、突触后膜 构成。突触的传递是 单 向的,因为递质(乙酰胆碱或单胺类物质)只存在于突触小体的 突触小泡内,而且只能由突触前膜释放,然后作用于突触后膜。 大脑皮层 是人最高级的神经中枢,人特有的中枢是 语言中枢 ,了解95页表。判断和推理是动物后天性行为发展的最高形式。反射分 条件 反射和 非条件 反射。
多细胞生物的发育一般从 受精卵 开始。生物的生殖分 有性 生殖和 无性 生殖,不经过 生殖 细胞结合,直接由 母体 产生新个体的生殖方式叫无性生殖,由 两性生殖细胞 结合成合子,再由合子发育成新个体的生殖方式叫 有性 生殖,变形虫、草履虫、细菌等单细胞生物进行 分裂 生殖,酵母菌(条件好时)、水螅进行 出芽 生殖,霉菌、蕨类进行 孢子 生殖,马铃薯、草莓进行 营养 生殖,以上生物的生殖属于 无性 生殖,多数生物进行 有性 生殖。有性生殖的后代具有双亲遗传性,具有更强的生活能力和变异性,如果要保持植物亲本的遗传性状不变,就要进行 无性(营养) 生殖如嫁接、扦插。植物组织培养的优点是: 取材少,培养周期短,繁殖率高,而且便于自动化管理。 绿色开花植物特有的受精方式是 双受精 ,种子的胚由 卵细胞 和 精子 受精结合而成,胚将发育成新的植物体,胚乳由 精子 和 极核 受精结合而成。种子萌发的营养来自胚的 子叶 或来自种子的 胚乳 。荠菜的受精卵经过短暂的 休眠 后,就开始有丝分裂,第一次分裂成两个细胞,其中靠近珠孔的叫基细胞,它发育成胚柄,吸取营养供球状胚发育,另一个细胞叫 顶 细胞,它发育成球状胚体,由球状胚体发育成种子的胚(包括 胚芽、胚根、胚轴、子叶 ),荠菜的胚乳在发育过程中被胚吸收到 子叶 里。绿色开花植物的生长包括营养生长和 生殖 生殖生长, 花芽 的形成,标志着生殖生长的开始。高等动物的个体发育包括 胚胎 发育和 胚后 发育两个阶段。蛙的胚后发育属于 变态 发育。蛙的受精卵的动物极卵黄 少 ,轻,颜色 深 ,朝上,利于吸收太阳光,植物极相反,蛙受精卵分裂到一定时期,细胞增多,内部出现空腔,叫 囊胚 腔 ,这时的胚胎叫 囊胚 ,后来因为 动物 极细胞分裂较快,新细胞向植物极推移,植物极细胞向囊胚腔陷入,形成 原肠腔,形成 原肠 胚,具有三个胚层的时期是 原肠 胚时期,在 原肠胚 时期出现细胞的分化。陆生动物出现羊膜的意义 保证胚胎发育所需要的水环境,还有防震和保护作用,增强适应陆地环境的能力
㈡ 高中生物大纲
高中生物知识列表
绪论
生物的基本特性 生物体具有共同的物质基础和结构基础
新陈代谢作用
应激性
生长、发育、生殖
遗传和变异
生物体都能适应一定的环境和影响环境 生物体的基本组成物质中都有蛋白质和核酸。
蛋白质是生命活动的主要承担者。
核酸是遗传信息的携带者。
细胞是生物体的结构和功能的基本单位。
新陈代谢是活细胞中全部有序的化学变化的总称。
新陈代谢是生物体进行一切生命活动的基础。
生物学发展 三阶段:
描述性生物学、实验生物学、分子生物学 《细胞学说》——为研究生物的结构、生理、生殖和发育奠定了基础;
《物种起源》——推动现代生物学的发展方面起了巨大作用;
孟德尔;DNA双螺旋结构;
生物科学发展 生物工程、医药、农业、能源开发与环保 疫苗制造——核心:基因工程
抗虫棉;石油草;超级菌
生命的物质基础
生物体的生命活动都有共同的物质基础
化学元素 在不同的生物体内,各种化学元素的含量相差很大。
分类:大量元素、微量元素
化合物是生物体生命活动的物质基础。
化学元素能够影响生物体的生命活动。
生物界和非生物界具有统一性和差异性
化合物 水、无机盐、糖类、脂类、蛋白质、核酸。
水——自由水、结合水
无机盐的离子对于维持生物体的生命活动有重要作用。
糖类——单糖、二糖、多糖。
脂质——脂肪、类脂、固醇
自由水是细胞内的良好溶剂,可以把营养物质运送到各个细胞。
维持细胞的渗透压和酸碱平衡,细胞形态、功能。
糖类是构成生物体的重要成分,也是细胞的主要能源物质。
脂肪是生物体内储存能量的物质;减少身体热量散失,维持体温恒定,减少内脏摩擦,缓冲外界压力。
磷脂是构成细胞膜的重要成分。
固醇——胆固醇、维生素D、性激素;维持正常新陈代谢和生殖过程。
蛋白质与核酸 蛋白质和核酸都是高分子物质。
蛋白质是细胞中重要的有机化合物,一切生命活动都离不开蛋白质。
核酸是遗传信息的载体。
蛋白质结构:氨基酸的种类、数目、排列和肽链的空间结构。
蛋白质功能:催化、运输、调节、免疫、识别
染色体是遗传物质的主要载体。
生命的基本单位——细胞
细胞是生物体的结构和功能的基本单位。
细胞结构与功能 细胞分类:真核生物、原核生物
细胞具有非常精细的结构和复杂的自控功能。 细胞只有保持完整性,才能够正常地完成各项生命活动。
细胞膜 结构:流动镶嵌模型——磷脂、蛋白质。
基本骨架:磷脂双分子层
糖被的结构:蛋白质+多糖。
细胞壁:纤维素、果胶 功能:流动性、选择透过性
选择透过性:自由扩散(苯)、主动运输
主动运输:能保证活细胞按照生命活动的需要,选择吸收所需要的营养物质,排除新陈代谢产生的废物和有害物质。
糖被功能:保护和润滑、识别
细胞质 基质——营养物质
细胞质基质是活细胞进行新陈代谢的主要场所。
各种细胞器是完成其功能的结构基础和单位。
线粒体是活细胞进行有氧呼吸的主要场所。
叶绿体是细胞光合作用的场所。
内质网——光面:脂类、糖类合成与运输
粗面:糖蛋白的加工合成
核糖体
高尔基体
液泡对细胞的内环境起着调节作用,可以使细胞保持一定的渗透压和膨胀状态。
细胞核 结构:核膜、核仁、染色质
核膜——是选择透过性膜,但不是半透膜
染色质——DNA+蛋白质
染色质和染色体是细胞中同一种物质和不同时期的两种形态 功能:
核孔——核质之间进行物质交换的孔道。
细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。
细胞核在生命活动中起着决定作用。
原核细胞 主要特点是没有由核膜包围的典型细胞核。
其细胞壁不含纤维素,而主要是糖类和蛋白质。
没有复杂的细胞器,但有分散的核糖体。
拟核 裸露DNA
细胞相对较小
细胞增殖 方式:有丝分裂、无丝分裂,减数分裂。 细胞增殖是生物体生长、发育、繁殖、遗传的基础。
有丝分裂
细胞周期 有丝分裂是真核生物进行细胞分裂的主要方式。
体细胞进行有丝分裂是有周期性的,也就有细胞周期
动物与植物有丝分裂区别:前期、末期 不同种类的细胞,一个细胞周期的时间不同。
分裂间期最大特点:完成DNA分子复制和有关蛋白质的合成。
意义:保持了遗传性状的稳定性。
细胞分化 仅有细胞的增殖,而没有细胞分化,生物体不能进行正常的生长发育。
细胞分化是一种持久性的变化,发生在生物体的整个生命进程中,胚胎时期达最大限度。
细胞稳定性变异是不可逆转的。
细胞全能性:高度分化的植物细胞仍然具有发育成完整植株的潜在能力。 全能性表现最强的细胞是已启动分裂的干细胞;
受精卵具有最高全能性。
细胞癌变 细胞畸形分化。 (有一种学说认为是这样,人体的体细胞是由原始的干祖细胞逐渐细胞分裂,在其过程中通过相关基因的选择性表达,形成不同形态和功能的体细胞,这样的过程就是分化。那么在分化的过程中,出现基因表达的异常,而自身对其的监测和修复机制失效的话,异常表达的基因累积到一定程度就形成癌细胞了。所以癌细胞大多产生于经常更新而其更新过程又受到多种因素干扰的组织,也就认为细胞癌变是畸形分化的结果了。)
致癌因子:物理、化学、病毒。
癌细胞由于原癌基因从抑制变成激活状态,使细胞发生转化而引起的。 特征:无限增殖;形态结构变化;细胞膜变化。
细胞衰老 是细胞生理和生化发生复杂变化的过程,最终反映在细胞的形态、结构、功能上发生了变化。 特征:水分减少,新陈代谢减弱;酶的活性降低;
色素积累,阻碍了细胞内物质交流和信息传递;
呼吸速度减慢,体积增大,染色质固缩、染色加深,物质运输功能降低。
第三章 生物新陈代谢
在新陈代谢基础上,生物体才能表现(生长发育遗传变异)生命的基本特征。 新陈代谢是生物最基本的特征,是生物与非生物最本质的区别。
酶 酶是活细胞的一类具有生物催化作用的有机物(蛋白质、核酸) 特征:高效性、专一性。
需要的适宜条件:适宜温度和PH
ATP ATP是新陈代谢所需能量的直接来源。
形成途径:动物——呼吸作用
植物——光合作用、呼吸作用
形成方式:ADP+Pi+能量→(酶)ATP在细胞内含量很少,但转化十分迅速,总是处于动态平衡。
光合作用 意义:除了将太阳能转化成化学能,并贮存在光合作用制造的糖类等有机物中,以及维持大气中氧和二氧化碳含量的相对稳定外,还对生物的进化具有重要作用。 蓝藻在地球上出现以后,地球大气中才逐渐含有氧。
水分代谢 渗透作用必备条件:
具有半透膜;两侧溶液具有浓度差。
原生质层:细胞膜、液泡膜和这两层膜之间的细胞质。 蒸腾作用是水分吸收和矿质元素运输的动力。
矿质代谢 矿质元素以离子形式被根尖吸收。
植物对水分的吸收和对矿质元素的吸收是相对独立的过程。 矿质元素的利用形式:N、P、Mg
Ca、Fe
营养物质代谢 三大营养物质的基本来源是食物。
糖类:食物中的糖类绝大部分是淀粉。
脂类:食物中的脂类绝大部分是脂肪。
蛋白质:合成;氨基转换;脱氨基
关注:血糖调节、肥胖问题、饮食搭配。
只有合理选择和搭配食物,养成良好饮食习惯,才能维持健康,保证人体新陈代谢、生长发育等生命活动的正常进行。
甘油&脂肪酸大部分再度合成为脂肪。
动物性食物所含氨基酸种类比植物性食物齐全。
三大营养物质之间相互联系,相互制约。他们之间可以转化,但是有条件,而且转化程度有明显差异。
(三大营养物质代谢的关系
(1)糖类代谢和蛋白质代谢的关系
糖类和蛋白质在体内是可以相互转化的。几乎所有组成蛋白质的天然氨基酸都可以通过脱氨基作用,形成的不含氮部分进而转变成糖类;糖类代谢的中间产物可以通过氨基酸转换作用形成非必需氨基酸。注意:必需氨基酸在体内不能通过氨基转换作用形成。
(2)糖类代谢与脂质代谢的关系
糖类代谢的中间产物可以转化成脂肪,脂肪分解产生的甘油、脂肪酸也可以转化成糖类。糖类可以大量转化成脂肪,而脂肪却不能大量转化成糖类。
(3)蛋白质代谢和脂质代谢的关系
一般情况下,动物体内的脂肪不能转化为氨基酸,但在一些植物和微生物体内可以转化;一些氨基酸可以通过不同的途径转变成甘油和脂肪酸进而合成脂肪。
(4)糖类、蛋白质和脂质的代谢之间相互制约
糖类可以大量转化成脂肪,而脂肪却不可以大量转化成糖类。只有当糖类代谢发生障碍时才由脂肪和蛋白质来供能,当糖类和脂肪摄入量都不足时,蛋白质的分解才会增加。例如糖尿病患者糖代谢发生障碍时,就由脂肪和蛋白质来分解供能,因此患者表现出消瘦。 )
内环境与稳态 内环境相关系统:循环、呼吸、消化、泌尿。
包括:细胞外液(组织液、血浆、淋巴)
内环境是体内细胞生存的直接环境。
内环境理化性质包括:温度、PH、渗透压等
稳态:机体在神经系统和体液的调节下,通过各器官、系统的协调活动,共同维持内环境的相对稳定状态。 体内细胞只有通过内环境,才能与外界环境进行物质交换。
稳态意义:机体新陈代谢是由细胞内很多复杂的酶促反应组成的,而酶促反应的进行需要温和的外界条件,必须保持在适宜的范围内,酶促反应才能正常进行。
呼吸作用 分类:有氧呼吸、无氧呼吸
有氧和无氧呼吸的第一阶段都在细胞质基质中进行。
无氧呼吸的场所是细胞质基质
生物体生命活动都需要呼吸作用供能 意义:呼吸作用能为生物体生命活动供能;呼吸过程能为体内其他化合物的合成提供原料。
新陈代谢类型 同化作用
异化作用 自养型:光能自养、化能自养
异养型
需氧型
厌氧型
第四章 生命活动的调节
植物生命活动调节基本形式激素调节
动物生命活动调节基本形式神经调节和体液调节。神经调节占主导地位。
植物 向性运动是植物受单一方向的外界刺激引起定向运动。
植物的向性运动是对外界环境的适应性。
其他激素:赤霉素、细胞分裂素;脱落酸、乙烯。
植物的生长发育过程,不是受单一激素调节,而是由多种激素相互协调、共同调节。 生长素是最早发现的一种植物激素。
生长素的生理作用具有两重性,这与生长素浓度和植物器官种类等有关。
生长素的运输是从形态学的上端向下端运输。
应用:促扦插枝条生根;促果实发育;防落花果。
动物——体液 体液调节:某些化学物质通过体液传送,对人和动物体的生理活动所进行的调节。
激素调节是体液调节的主要内容。
反馈调节:协同作用、拮抗作用。
通过反馈调节作用,血液中的激素经常维持在正常的相对稳定的水平。 下丘脑是机体调节内分泌活动的枢纽。
激素调节是通过改变细胞代谢而发挥作用。
生长激素与甲状腺激素;血糖调节。
动物——神经 生命活动调节主要是由神经调节来完成。
神经调节基本方式——反射。
反射活动结构基础——反射弧
兴奋传导形式——神经冲动。
兴奋传导:神经纤维上传导;细胞间传递
神经调节以反射方式实现;体液调节是激素随血液循环输送到全身来调节。体内大多数内分泌腺受中枢神经系统控制,分泌的激素可以影响神经系统的功能。 反射活动——非条件反射、条件反射。
条件反射大大地提高了动物适应复杂环境变化的能力。
神经中枢功能——分析和综合
神经纤维上传导——电位变化、双向
细胞间传递——突触、单向
动物——行为 动物行为是在神经系统、内分泌系统、运动器官共同调节作用下形成的。
行为受激素、神经调节控制。
先天性行为:趋性、本能、非条件反射
后天性行为:印随、模仿、条件反射
动物建立后天性行为主要方式:条件反射
动物后天性行为最高级形式:判断、推理
高等动物的复杂行为主要通过学习形成。 神经系统的调节作用处主导地位。
性激素与性行为之间有直接联系。
垂体分泌的促性腺激素能促进性腺发育和性激素分泌,进而影响动物性行为。
大多数本能行为比反射行为复杂。(迁徙、织网、哺乳)
生活体验和学习对行为的形成起决定作用。
判断、推理是通过学习获得。
学习主要是与大脑皮层有关。
生物的生殖和发育
生殖 无性生殖、有性生殖
有性生殖使产生的后代具备了双亲的遗传特性,具有更强的生活能力和变异性,对生物的生存和进化具有重要意义。 单子叶:玉米、小麦、水稻
双子叶:豆类(花生、大豆)、黄瓜、荠菜
减数分裂和受精作用维持每种生物前后代体细胞中染色体数目的恒定,具有遗传和变异作用。
个体发育 从受精卵开始发育到性成熟个体的过程。
植物个体发育 花芽形成标志生殖生长的开始。 受精卵经过短暂休眠;受精极核不经休眠。
胚柄产生激素类物质,促进胚体发育。(胚柄可以从周围组织中吸收并运送营养物质,供球状胚体发育。研究表明,胚柄还能产生一些激素类的物质,促进胚体的发育。在胚体发育完成后,胚柄就退化消失了。)
动物个体发育 胚胎发育、胚后发育
含色素的动物极总是朝上,保证胚胎发育所需的温度条件。(动物卵细胞的富含原生质的一端。动物的卵多呈球形,由于卵内所含细胞质、细胞器、核糖体、卵黄、色素粒及糖原颗粒等物质的不均匀分布而表现出极 性,分为动物极和植物极。营养物质(卵黄)较少、卵裂速度较快的一极称为动物极。细胞核偏位于动物极。与动物极相对的一端含较多的卵黄颗粒或卵黄小板、卵 裂速度较慢的一极称植物极。)
生物的个体发育是系统发育短暂而迅速的重演。 爬行类、鸟类、哺乳类的胚胎发育早期具有羊膜结构,保证了胚胎发育所需的水环境,具有防震和保护作用,增强了对陆地环境的适应能力。
遗传和变异
遗传物质基础 DNA的探索:
转化因子的发现→转化因子是DNA→DNA是遗传物质→DNA是主要遗传物质
DNA复制是边解旋边复制的过程。
复制方式——半保留复制。
基因的本质是具有遗传效应的DNA片段
基因是决定生物性状的基本单位。
基因对性状的控制:
1 通过控制酶的合成来控制代谢过程;
2 通过控制蛋白质分子结构来直接影响 脱氧核苷酸是构成DNA的基本单位。
染色体是遗传物质的主要载体。
DNA分子结构:DNA双螺旋结构
碱基互补配对原则
碱基不同排列构成了DNA的多样性,也说明了生物体具有多样性和特异性的原因。
DNA双螺旋结构和碱基互补配对原则保证了复制能够精确、准确地进行,保持了遗传的连续性。
各种生物都公用同一套遗传密码。
中心法则的书写。
一个性状可由多个基因控制。
生物变异 不可遗传:不引起体内遗传物质变化
可遗传:基因突变、基因重组、染色体变异
多倍体产生原因,是体细胞在有丝分裂过程中,染色体完成了复制,但受外界影响,使纺锤体形成受破坏,从而染色体加倍。 基因突变是生物变异的根本来源,为生物进化提供了最初的原材料。(人工创造多倍体的主要方法使原种或杂种体细胞内染色体数加倍,采用的方法主要是用秋水仙素进行加倍。秋水仙素是从秋水仙的鳞茎和种子中提练出来的(秋水仙Colchicum antumnale)。
秋水仙素能使分生组织的分生细胞染色体数加倍,当秋水仙素溶液渗入分生组织正在分裂的分生细胞,分生细胞就不能形成纺缍体,有丝分裂过程就停滞在中期状 态,每个染色体复制的两个姊妹染色体单体虽然彼此分开,却不能分向两极,当细胞中染色体数加倍后,加倍了的分生细胞,不再有秋水仙素渗入,它们就在比原来 的染色体数多一倍的基础上恢复了正常的有丝分裂,最后长成多倍体。)
通过有性生殖过程实现的基因重组,为生物变异提供了极其丰富的来源,是形成生物多样性的 重要原因之一。
多倍体育种营养物质增加,但发育延迟、结实少。(优点:形态上加大(如茎秆、叶片、果实、种子、花朵等)和营养物质增多(如蛋白质、糖类、脂肪)。)
单倍体育种可以在短时间内得到一个稳定的纯系品种,明显缩短了育种年限。
优生措施 禁止近亲结婚;遗传咨询;适龄生育;产前诊断。
生物进化
进化基本单位——种群
进化实质——种群基因频率的改变
突变和基因重组只是产生生物进化的原材料,不能决定生物进化方向。
生物进化方向由自然选择决定。
不同种群之间一旦产生生殖隔离,就不会有基因交流。 突变和基因重组是生物进化的原材料;
自然选择决定生物进化方向;
隔离是新物种形成必要条件。
生物与环境
生态因素 非生物因素
光:光对植物的生理和分布起着决定性作用。
光对动物的影响很明显。(繁殖活动)
温度:温度对生物分布、生长、发育的影响
水:决定陆地生物分布的重要因素。 生物因素
种内关系:种内互助、种内斗争
种间关系:互利共生、寄生、竞争、捕食
种群 特征:种群密度、出生率和死亡率、年龄组成、性别比例。
数量变化:“J”曲线、“S”曲线。
研究数量变化意义:在野生生物资源的合理利用和保护、害虫防治方面。 影响种群变化因素:气候、食物、被捕食、传染病。
人类活动对自然界中种群数量变化的影响越来越大。
生物群落 垂直结构、水平结构
生态系统 结构
成分:非生物的物质和能量;生产者;消费者;分解者。
成分间联系——食物链、食物网
生产者固定的太阳能的总量是流经该系统的总能量。
能量流动特点:单向流动、逐级递减
物质循环和能量流动沿着食物链、网进行的。
据此实现对能量的多极利用,从而大大提高能量利用效率。
能量流动和物质循环是生态系统的主要功能。
生态系统稳定性 生态系统的自动调节能力是有一定限度。
一个生态系统,抵抗力稳定性与恢复力稳定性之间往往存在相反的关系。 生态系统成分越单纯,营养结构越简单,自动调节能力越低,抵抗力稳定性越低。
㈢ 高二生物知识点总结.
必修一
1、蛋白质的基本单位_氨基酸, 其基本组成元素是C、H、O、N
2、氨基酸的结构通式:R 肽键:—NH—CO—
|
NH2—C—COOH
|
H
3、肽键数=脱去的水分子数=_氨基酸数—肽链数
4、多肽分子量=氨基酸分子量 x氨基酸数—x水分子数18
5 、核酸种类DNA:和RNA;基本组成元素:C、H、O、N、P
6、DNA的基本组成单位:脱氧核苷酸;RNA的基本组成单位:核糖核苷酸
7、核苷酸的组成包括:1分子磷酸、1分子五碳糖、1分子含氮碱基。
8、DNA主要存在于中细胞核,含有的碱基为A、G、C、T;
RNA主要存在于中细胞质,含有的碱基为A、G、C、U;
9、细胞的主要能源物质是糖类,直接能源物质是ATP。
10、葡萄糖、果糖、核糖属于单糖;
蔗糖、麦芽糖、乳糖属于二糖;
淀粉、纤维素、糖原属于多糖。
11、脂质包括:脂肪、磷脂和固醇。
12、大量元素:C、H、O、N、P、S、K、Ca、Mg(9种)
微量元素:Fe、Mn、B、Zn、Cu、Mo(6种)
基本元素:C、H、O、N(4种)
最基本元素: C(1种)
主要元素:C、H、O、N、P、S(6种)
13、水在细胞中存在形式:自由水、结合水。
14、细胞中含有最多的化合物:水。
15、血红蛋白中的无机盐是:Fe2+,叶绿素中的无机盐是:Mg2+
16、被多数学者接受的细胞膜模型叫流动镶嵌模型
17、细胞膜的成分:蛋白质、脂质和少量糖类。细胞膜的基本骨架是磷脂双分子层。
18、细胞膜的结构特点是:具有流动性;功能特点是:具有选择透过性。
19、具有双层膜的细胞器:线粒体、叶绿体;
不具膜结构的细胞器:核糖体、中心体;
有“动力车间”之称的细胞器是线粒体;
有“养料制造车间”和“能量转换站”之称的是叶绿体;
有“生产蛋白质的机器”之称的是核糖体;
有“消化车间”之称的是溶酶体;
存在于动物和某些低等植物体内、与动物细胞有丝分裂有关的细胞器是中心体。
与植物细胞细胞壁形成有关、与动物细胞分泌蛋白质有关的细胞器是高尔基体。
20、细胞核的结构包括:核膜、染色质和核仁。
细胞核的功能:是遗传物质贮存和复制的场所,是细胞代谢和遗传的控制中心。
21、原核细胞和真核细胞最主要的区别:有无以核膜为界限的、细胞核
22、物质从高浓度到低浓度的跨膜运输方式是:自由扩散和协助扩散;需要载体的运输方式是:协助扩散和主动运输; 需要消耗能量的运输方式是:主动运输
㈣ 高二生物复习提纲及知识点
第一章、生命的物质基础第一节、组成生物体的化学元素
名词:
1、微量元素:生物体必需的,含量很少的元素。如:Fe、Mn、B、Zn、Cu、Mo,巧记:铁门碰醒铜母(驴)。
2、大量元素:生物体必需的,含量占生物体总重量万分之一以上的元素。如:C、 0、H、N、S、P、Ca、MgK( 巧记:洋人探亲,丹留人盖美家。
3、统一性:组成细胞的化学元素在非生物界都可以找到,这说明了生物界与非生物界具有统一性。
4、差异性 :组成生物体的化学元素在细胞内的含量与在非生物界中的含量明显不同,说明了生物界与非生物界存在着差异性。
语句:
1、地球上的生物现在大约有200万种,组成生物体的化学元素有20多种。
2、生物体生命活动的物质基础是指组成生物体的各种元素和化合物。
3、组成生物体的化学元素的重要作用:① C、H、O、N、P、S 6种元素是组成原生质的主要元素,大约占原生质的97%。②.有的参与生物体的组成。③有的微量元素能影响生物体的生命活动(如:
第二节、组成生物体的化合物
名词:
1、原生质:指细胞内有生命的物质,包括细胞质、细胞核和细胞膜三部分。不包括细胞壁,其主要成分为核酸和蛋白质。如:一个植物细胞就不是一团原生质。
2、结合水:与细胞内其它物质相结合,是细胞结构的组成成分。
3、自由水:可以自由流动,是细胞内的良好溶剂,参与生化反应,运送营养物质和新陈代谢的废物。
4、无机盐:多数以离子状态存在,细胞中某些复杂化合物的重要组成成分(如铁是血红蛋白的主要成分),维持生物体的生命活动(如动物缺钙会抽搐),维持酸碱平衡,调节渗透压。
5、糖类:有单糖、二糖和多糖之分。a、单糖:是不能水解的糖。动、植物细胞中有葡萄糖、果糖、核糖、脱氧核糖。b、二糖:是水解后能生成两分子单糖的糖。植物细胞中有蔗糖、麦芽糖,动物细胞中有乳糖。c、多糖:是水解后能生成许多单糖的糖。植物细胞中有淀粉和纤维素(纤维素是植物细胞壁的主要成分)和动物细胞中有糖元(包括肝糖元和肌糖元)。
6、可溶性还原性糖:葡萄糖、果糖、麦芽糖等。
7、脂类包括:a、脂肪(由甘油和脂肪酸组成,生物体内主要储存能量的物质,维持体温恒定。)b、类脂(构成细胞膜、线立体膜、叶绿体膜等膜结构的重要成分)c、固醇(包括胆固醇、性激素、维生素D等,具有维持正常新陈代谢和生殖过程的作用。)
8、脱水缩合:一个氨基酸分子的氨基(-NH2)与另一个氨基酸分子的羧基(-COOH)相连接,同时失去一分子水。
9、肽键:肽链中连接两个氨基酸分子的键(-NH-CO-)。
10、二肽:由两个氨基酸分子缩合而成的化合物,只含有一个肽键。
11、多肽:由三个或三个以上的氨基酸分子缩合而成的链状结构。有几个氨基酸叫几肽。
12、肽链:多肽通常呈链状结构,叫肽链。
13、氨基酸:蛋白质的基本组成单位 ,组成蛋白质的氨基酸约有20种,决定20种氨基酸的密码子有61种。氨基酸在结构上的特点:每种氨基酸分子至少含有一个氨基(-NH2)和一个羧基(-COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上(如:有-NH2和-COOH但不是连在同一个碳原子上不叫氨基酸)。R基的不同氨基酸的种类不同。
14、核酸:最初是从细胞核中提取出来的,呈酸性,因此叫做核酸。核酸最遗传信息的载体,核酸是一切生物体(包括病毒)的遗传物质,对于生物体的遗传变异和蛋白质的生物合成有极其重要的作用。
15、脱氧核糖核酸(DNA):它是核酸一类,主要存在于细胞核内,是细胞核内的遗传物质,此外,在细胞质中的线粒体和叶绿体也有少量DNA。
16、核糖核酸:另一类是含有核糖的,叫做核糖核酸,简称RNA。
公式:
1、肽键数=脱去水分子数=氨基酸数目—肽链数。
2、基因(或DNA)的碱基:信使RNA的碱基:氨基酸个数=6:3:1
语句:
1、自由水和结合水是可以相互转化的,如血液凝固时,部分自由水转化为结合水。自由水/结合水的值越大,新陈代谢越活跃。自由水是细胞内的良好溶剂。
2、能源物质系列:生物体的能源物质是糖类、脂类和蛋白质;糖类是细胞的主要能源物质,是生物体进行生命活动的主要能源物质;生物体内的主要贮藏能量的物质是脂肪;动物细胞内的主要贮藏能量的物质是糖元;植物细胞内的主要贮藏能量的物质是淀粉;生物体内的直接能源物质是ATP;生物体内的最终能量来源是太阳能。
3、糖类、脂类、蛋白质、核酸四种有机物共同的元素是C、H、O三种元素,蛋白质必须有N,核酸必须有N、P;蛋白质的基本组成单位是氨基酸,核酸的基本组成单位是核苷酸。(例: DNA、叶绿素、纤维素、胰岛素、肾上腺皮质激素在化学成分中共有的元素是C、H、O)。
4、蛋白质的四大特点:①相对分子质量大;②分子结构复杂;③种类极其多样;④功能极为重要。
5、蛋白质结构多样性:①氨基酸种数不同,②氨基酸数目不同,③氨基酸排列次序不同,④肽链空间结构不同。
6、蛋白质分子结构的多样性决定了蛋白质分子功能多样性,概括有:①构成细胞和生物体的重要物质如肌动蛋白;②催化作用:如酶;③调节作用:如胰岛素、生长激素;④免疫作用:如抗体,抗原(不是蛋白质);⑤运输作用:如红细胞中的血红蛋白。 注意:蛋白质分子的多样性是由核酸控制的。
7、一切生命活动都离不开蛋白质,蛋白质是生命活动的承担者。核酸是一切生物的遗传物质,是遗传信息的载体,存在于一切细胞中(不是存在于一切生物中),对于生物的遗传、变异和蛋白质的合成具有重要作用。
8、组成核酸的基本单位是核苷酸,是由一分子磷酸、一分子核糖、一分子含氮碱基组成。组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸。
第二章、生命的基本单位——细胞第一节、细胞的结构和功能
名词:
1、显微结构:在普通光学显微镜中能够观察到的细胞结构。
2、亚显微结构:在普通光学显微镜下观察不能分辨清楚的细胞内各种微细结构。
3、原核细胞:细胞较小,没有成形的细胞核。组成核的物质集中在核区,没有染色体,DNA 不与蛋白质结合,无核膜、无核仁;细胞器只有核糖体;有细胞壁,成分与真核细胞不同。
4、真核细胞:细胞较大,有真正的细胞核,有一定数目的染色体,有核膜、有核仁,一般有多种细胞器。
5、原核生物:由原核细胞构成的生物。如:蓝藻、绿藻、细菌(如硝化细菌、乳酸菌、大肠杆菌、肺炎双球菌)、放线菌、支原体等都属于原核生物。
6、真核生物:由真核细胞构成的生物。如:酵母菌、霉菌、食用菌、衣藻、变形虫、草里履虫、疟原虫等。
7、细胞膜的选择透过性:这种膜可以让水分子自由通过,细胞要选择吸收的离子和小分子(如:氨基酸、葡萄糖)也可以通过,而其它的离子、小分子和大分子(如:信使RNA、蛋白质、核酸、蔗糖)则不能通过。
8、膜蛋白:指细胞内各种膜结构中蛋白质成分。
9、载体蛋白:膜结构中与物质运输有关的一种跨膜蛋白质,细胞膜中的载体蛋白在协助扩散和主动运输中都有特异性。10、细胞质:在细胞膜以内、细胞核以外的原生质,叫做细胞质。细胞质主要包括细胞质基质和细胞器。
11、细胞质基质:细胞质内呈液态的部分是基质,是细胞进行新陈代谢主要场所。
12、细胞器:细胞质中具有特定功能的各种亚细胞结构的总称。
13、细胞壁:植物细胞的外面有细胞壁,主要化学成分是纤维素和果胶,其作用是支持和保护。其性质是全透的。
语句:
1、地球上的生物,除了病毒以外,所有的生物体都是由细胞构成的。(生物分类也就有了细胞生物和非细胞生物之分)。
2、细胞膜由双层磷脂分子镶嵌了蛋白质。蛋白质可以以覆盖、贯穿、镶嵌三种方式与双层磷脂分子相结合。磷脂双分子层是细胞膜的基本支架,除保护作用外,还与细胞内外物质交换有关。
3、细胞膜的结构特点是具有一定的流动性;功能特性是选择透过性。如:变形虫的任何部位都能伸出伪足,人体某些白细胞能吞噬病菌,这些生理的完成依赖细胞膜的流动性。
4、物质进出细胞膜的方式:a、自由扩散:从高浓度一侧运输到低浓度一侧;不消耗能量。例如:H2O、O2、CO2、甘油、乙醇、苯等。b、主动运输:从低浓度一侧运输到高浓度一侧;需要载体;需要消耗能量。例如:葡萄糖、氨基酸、无机盐的离子(如K+ )。c、协助扩散:有载体的协助,能够从高浓度的一边运输到低浓度的一边,这种物质出入细胞的方式叫做协助扩散。如:葡萄糖进入红细胞。
5、线粒体:呈粒状、棒状,普遍存在于动、植物细胞中,内有少量DNA和RNA内膜突起形成嵴,内膜、基质和基粒中有许多种与有氧呼吸有关的酶,线粒体是细胞进行有氧呼吸的主要场所,生命活动所需要的能量,大约95%来自线粒体。
6、叶绿体:呈扁平的椭球形或球形,主要存在植物叶肉细胞里,叶绿体是植物进行光合作用的细胞器,含有叶绿素和类胡萝卜素,还有少量DNA和RNA,叶绿素分布在基粒片层的膜上。在片层结构的膜上和叶绿体内的基质中,含有光合作用需要的酶。
7、内质网:由膜结构连接而成的网状物。功能:增大细胞内的膜面积,使膜上的各种酶为生命活动的各种化学反应的正常进行,创造了有利条件。
8、核糖体:椭球形粒状小体,有些附着在内质网上,有些游离在细胞质基质中。是细胞内将氨基酸合成蛋白质的场所。
9、高尔基体:由扁平囊泡、小囊泡和大囊泡组成,为单层膜结构,一般位于细胞核附近的细胞质中。在植物细胞中与细胞壁的形成有关,在动物细胞中与分泌物的形成有关,并有运输作用。
10、中心体:每个中心体含两个中心粒,呈垂直排列,存在动物细胞和低等植物细胞,位于细胞核附近的细胞质中,与细胞的有丝分裂有关。
11、液泡:是细胞质中的泡状结构,表面有液泡膜,液泡内有细胞液。化学成分:有机酸、生物碱、糖类、蛋白质、无机盐、色素等。有维持细胞形态、储存养料、调节细胞渗透吸水的作用。
12、与胰岛素合成、运输、分泌有关的细胞器是:核糖体、内质网、高尔基体、线粒体。在胰岛素的合成过程中,合成的场所是核糖体,胰岛素的运输要通过内质网来进行,胰岛素在分泌之前还要经高尔基体的加工,在合成和分泌过程中线粒体提供能量。
13、在真核细胞中,具有双层膜结构的细胞器是:叶绿体、线粒体;具有单层膜结构的细胞器是:内质网、高尔基体、液泡;不具膜结构的是:中心体、核糖体。另外,要知道细胞核的核膜是双层膜,细胞膜是单层膜,但它们都不是细胞器。植物细胞有细胞壁和是叶绿体,而动物细胞没有,成熟的植物细胞有明显的液泡,而动物细胞中没有液泡;在低等植物和动物细胞中有中心体,而高等植物细胞则没有;此外,高尔基体在动植物细胞中的作用不同。
14、细胞核的简介:(1)存在绝大多数真核生物细胞中;原核细胞中没有真正的细胞核;有的真核细胞中也没有细胞核,如人体内的成熟的红细胞。(2)细胞核结构:a、核膜:控制物质的进出细胞核。说明:核膜是和内质网膜相连的,便于物质的运输;在核膜上有许多酶的存在,有利于各种化学反应的进行。b、核孔:在核膜上的不连贯部分;作用:是大分子物质进出细胞核的通道。c、核仁:在细胞周期中呈现有规律的消失(分裂前期)和出现(分裂末期),经常作为判断细胞分裂时期的典型标志。d、染色质:细胞核中易被碱性染料染成深色的物质。提出者:德国生物学家瓦尔德尔提出来的。组成主要由DNA和蛋白质构成。染色质和染色体是同一种物质在不同时期的细胞中的两种不同形态!(3)细胞核的功能:是遗传物质储存和复制的场所;是细胞遗传特性和代谢中心活动的控制中心。
15、原核细胞与真核细胞的主要区别是有无成形的细胞核,也可以说是有无核膜,因为有核膜就有成形的细胞核,无核膜就没有成形的细胞核。这里有几个问题应引起注意:(1)病毒既不是原核生物也不是真核生物,因为病毒没有细胞结构。(2)原生动物(如草履虫、变形虫等)是真核生物。(3)不是所有的菌类都是原核生物,细菌(如硝化细菌、乳酸菌等)是原核生物,而真菌(如酵母菌、霉菌、蘑菇等)是真核生物。
16、在线粒体中,氧是在有氧呼吸第三个阶段两个阶段产生的氢结合生成水,并放出大量的能量;光合作用的暗反应中,光反应产生的氢参与暗反应中二氧化碳的还原生成水和葡萄糖;蛋白质是由氨基酸在核糖体上经过脱水缩合而成,有水的生成。
第二节、细胞增殖
名词:
1、染色质:在细胞核中分布着一些容易被碱性染料染成深色的物质,这些物质是由DNA和蛋白质组成的。在细胞分裂间期,这些物质成为细长的丝,交织成网状,这些丝状物质就是染色质。
2、染色体:在细胞分裂期,细胞核内长丝状的染色质高度螺旋化,缩短变粗,就形成了光学显微镜下可以看见的染色体。3、姐妹染色单体:染色体在细胞有丝分裂(包括减数分裂)的间期进行自我复制,形成由一个着丝点连接着的两条完全相同的染色单体。(若着丝点分裂,则就各自成为一条染色体了)。每条姐妹染色单体含1个DNA,每个DNA一般含有2条脱氧核苷酸链。
4、有丝分裂:大多数植物和动物的体细胞,以有丝分裂的方式增加数目。有丝分裂是细胞分裂的主要方式。亲代细胞的染色体复制一次,细胞分裂两次。
5、细胞周期:连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,这是一个细胞周期。一个细胞周期包括两个阶段:分裂间期和分裂期。分裂间期:从细胞在一次分裂结束之后到下一次分裂之前,叫分裂间期。分裂期:在分裂间期结束之后,就进入分裂期。分裂间期的时间比分裂期长。
6、纺锤体:是在有丝分裂中期细胞质中出现的结构,它和染色体的运动有密切关系。
7、赤道板:细胞有丝分裂中期,染色体的着丝粒准确地排列在纺锤体的赤道平面上,因此叫做赤道板。
8、无丝分裂:分裂过程中没有出现纺锤体和染色体的变化。例如,蛙的红细胞。
公式:
1)染色体的数目=着丝点的数目。
2)DNA数目的计算分两种情况:①当染色体不含姐妹染色单体时,一个染色体上只含有一个DNA分子;②当染色体含有姐妹染色单体时,一个染色体上含有两个DNA分子。
语句:
1、染色质、染色体和染色单体的关系:第一,染色质和染色体是细胞中同一种物质在不同时期细胞中的两种不同形态。第二,染色单体是染色体经过复制(染色体数量并没有增加)后仍连接在同一个着点的两个子染色体(姐妹染色单体);当着丝点分裂后,两染色单体就成为独立的染色体(姐妹染色体)。
2、染色体数、染色单体数和DNA分子数的关系和变化规律:细胞中染色体的数目是以染色体着丝点的数目来确定的,无论一个着丝点上是否含有染色单体。在一般情况下,一个染色体上含有一个 DNA分子,但当染色体(染色质)复制后且两染色单体仍连在同一着丝点上时,每个染色体上则含有两个DNA分子。
3、植物细胞有丝分裂过程:(1)分裂间期:完成DNA分子的复制和有关蛋白质的合成。结果:每个染色体都形成两个姐妹染色单体,呈染色质形态。(2)细胞分裂期:A、分裂前期:①出现染色体、出现纺锤体②核膜、核仁消失;记忆口诀:膜仁消失两体现(说明是染色体出现和纺锤体形成 )B、分裂中期:①所有染色体的着丝点都排列在赤道板上②在分裂中期染色体的形态和数目最清晰,观察染色体形态数目最好的时期;记忆口诀:着丝点在赤道板。C、分裂后期:①着丝点一分为二,姐妹染色单体分开,成为两条子染色体,并分别向两极移动②染色单体消失,染色体数目加倍;记忆口诀:着丝点裂体平分。D、分裂末期:①染色体变成染色质,纺锤体消失②核膜、核仁重现③在赤道板位置出现细胞板。记忆口诀:膜仁重现新壁成。
4、动、植物细胞有丝分裂的异同:①相同点是染色体的行为特征相同,染色体复制后平均分配到两个子细胞中去。②区别:前期(纺锤体的形成方式不同):植物细胞由细胞两极发出纺锤丝形成纺锤体;动物细胞由细胞的两组中心粒发出星射线形成纺锤体。末期(细胞质的分裂方式不同):植物细胞在赤道板位置出现细胞板形成细胞壁将细胞质分裂为二;动物细胞:细胞膜从中部向内凹陷将细胞质缢裂为二。
5、DNA分子数目的加倍在间期,数目的恢复在末期;染色体数目的加倍在后期,数目的恢复在末期;染色单体的产生在间期,出现在前期,消失在后期。
6、有丝分裂中染色体、DNA分子数各期的变化:①染色体(后期暂时加倍):间期2N,前期2N,中期2N,后期4N,末期2N;②染色单体(染色体复制后,着丝点分裂前才有):间期0-4N,前期4N,中期4N,后期0,末期0。③DNA数目(染色体复制后加倍,分裂后恢复):间期2a -4a,前期4a,中期 4a,后期 4a,末期 2a;④同源染色体(对)(后期暂时加倍):间期N前期N中期 N后期2N末期N。
7、细胞以分裂方式进行增殖,细胞增殖是生物体生长、发育、繁殖和遗传的基础。细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。
第三节、细胞的分化
名词:
1、细胞的分化:在个体发育过程中,相同细胞(细胞分化的起点)的后代,在细胞的形态、结构和生理功能上发生的稳定性差异的过程。
2、细胞全能性:一个细胞能够生长发育成整个生物的特性。
3、细胞的癌变:在生物体的发育中,有些细胞受到各种致癌因子的作用,不能正常的完成细胞分化,变成了不受机体控制的、能够连续不断的分裂的恶性增殖细胞。
4、细胞的衰老是细胞生理和生化发生复杂变化的过程,最终反应在细胞的形态、结构和生理功能上。
语句:
1、细胞的分化注意点:a、发生时期:是一种持久性变化,它发生在生物体的整个生命活动进程中,胚胎时期达到最大限度。b、细胞分化的特性:稳定性、持久性、不可逆性、全能性。c、意义:经过细胞分化,在多细胞生物体内就会形成各种不同的细胞和组织;多细胞生物体是由一个受精卵通过细胞增殖和分化发育而成,如果仅有细胞增殖,没有细胞分化,生物体是不能正常生长发育的。
2、细胞的癌变特点:a、癌细胞的特征:能够无限增殖;形态结构发生了变化;癌细胞表面发生了变化。b、致癌因子:物理致癌因子:主要是辐射致癌;化学致癌因子:如苯、坤、煤焦油等;病毒致癌因子:能使细胞癌变的病毒叫肿瘤病毒或致癌病毒。c、机理是癌细胞是由于原癌基因激活,细胞发生转化引起的。d、预防:避免接触致癌因子;增强体质,保持心态健康,养成良好习惯,从多方面积极采取预防措施。
3、细胞衰老的主要特征:a.水分减少,细胞萎缩,体积变小,代谢减慢;b、有些酶活性降低(细胞中酪氨酸酶活性降低会导致头发变白);c.色素积累(如:老年斑);d.呼吸减慢,细胞核增大,染色质固缩,染色加深;e.细胞膜通透功能改变,物质运输能力降低。
4、从理论上讲,生物体的每一个活细胞都应该具有全能性。在生物体内,细胞并没有表现出全能性,而是分化成为不同的细胞、器官,这是基因在特定的时间、空间条件下选择性表达的结果,当植物细胞脱离了原来所在植物体的器官或组织而处于离体状态时,在一定的营养物质、激素和其他外界的作用条件下,就可能表现出全能性,发育成完整的植株。
㈤ 高二生物上册知识点总结
必修一
1、蛋白质的基本单位_氨基酸, 其基本组成元素是C、H、O、N
2、氨基酸的结构通式:R 肽键:—NH—CO—
|
NH2—C—COOH
|
H
3、肽键数=脱去的水分子数=_氨基酸数—肽链数。
4、多肽分子量=氨基酸分子量 x氨基酸数—x水分子数18。
5 、核酸种类DNA:和RNA;基本组成元素:C、H、O、N、P
6、DNA的基本组成单位:脱氧核苷酸;RNA的基本组成单位:核糖核苷酸。
7、核苷酸的组成包括:1分子磷酸、1分子五碳糖、1分子含氮碱基。
8、DNA主要存在于中细胞核,含有的碱基为A、G、C、T。
RNA主要存在于中细胞质,含有的碱基为A、G、C、U。
9、细胞的主要能源物质是糖类,直接能源物质是ATP。
10、葡萄糖、果糖、核糖属于单糖。
蔗糖、麦芽糖、乳糖属于二糖。
淀粉、纤维素、糖原属于多糖。
11、脂质包括:脂肪、磷脂和固醇。
12、大量元素:C、H、O、N、P、S、K、Ca、Mg(9种)
微量元素:Fe、Mn、B、Zn、Cu、Mo(6种)
基本元素:C、H、O、N(4种)
最基本元素: C(1种)
主要元素:C、H、O、N、P、S(6种)
13、水在细胞中存在形式:自由水、结合水。
14、细胞中含有最多的化合物:水。
15、血红蛋白中的无机盐是:Fe2+,叶绿素中的无机盐是:Mg2+。
16、被多数学者接受的细胞膜模型叫流动镶嵌模型。
17、细胞膜的成分:蛋白质、脂质和少量糖类。细胞膜的基本骨架是磷脂双分子层。
18、细胞膜的结构特点是:具有流动性;功能特点是:具有选择透过性。
19、具有双层膜的细胞器:线粒体、叶绿体。
不具膜结构的细胞器:核糖体、中心体。
有“动力车间”之称的细胞器是线粒体。
有“养料制造车间”和“能量转换站”之称的是叶绿体。
有“生产蛋白质的机器”之称的是核糖体。
有“消化车间”之称的是溶酶体。
存在于动物和某些低等植物体内、与动物细胞有丝分裂有关的细胞器是中心体。
与植物细胞细胞壁形成有关、与动物细胞分泌蛋白质有关的细胞器是高尔基体。
20、细胞核的结构包括:核膜、染色质和核仁。
细胞核的功能:是遗传物质贮存和复制的场所,是细胞代谢和遗传的控制中心。
21、原核细胞和真核细胞最主要的区别:有无以核膜为界限的、细胞核。
22、物质从高浓度到低浓度的跨膜运输方式是:自由扩散和协助扩散;需要载体的运输方式是:协助扩散和主动运输; 需要消耗能量的运输方式是:主动运输。