acl期刊
㈠ 刘洋的简历
2002年毕业于武汉大学计算机学院并获工学学士学位,2007年毕业于中国科学院计算技术研究所并获工学博士学位。研究方向是自然语言处理,近年来从事的科研工作集中在统计机器翻译领域。近五年来在自然语言处理的顶级国际会议和期刊上发表8篇论文(5篇ACL、1篇EMNLP、1篇Coling、1篇计算语言学长文),并获COLING/ACL 2006的Meritorious Asian NLP Paper Award。2007年入选计算所首批百星计划,2009年赴美国卡内基梅隆大学进行学术访问,并对微软、Google、南加州大学和约翰霍普金斯大学进行短期访问,2010年获得计算所“卓越之星”称号。2010年在自然语言处理领域国际顶级期刊计算语言学上发表国内第一篇长文,并在ACL上成为国内第一个做tutorial学者。2011年9月加盟清华大学计算机系。
㈡ 分析化学方面的权威期刊有哪些
美国化学会出版的分析化学(《Analytical Chemistry 》),分析家(《analyst》),分析化学学报(《Analytica Chimica Acta》),分析方法(《Analytiacl Methods》),塔兰塔(《Talanta》),色谱A(《Journal of Chromatography A》)等等
当然,分析化学也属于化学的一大分支,像JACS,Angewandte之类的顶级综合化学类的期刊也会出版分析化学方面的文章。
希望能够帮到你
㈢ 自然语言处理怎么最快入门
作者:刘知远
链接:http://www.hu.com/question/19895141/answer/24710071
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
昨天实验室一位刚进组的同学发邮件来问我如何查找学术论文,这让我想起自己刚读研究生时茫然四顾的情形:看着学长们高谈阔论领域动态,却不知如何入门。经过研究生几年的耳濡目染,现在终于能自信地知道去哪儿了解最新科研动态了。我想这可能是初学者们共通的困惑,与其只告诉一个人知道,不如将这些Folk Knowledge写下来,来减少更多人的麻烦吧。当然,这个总结不过是一家之谈,只盼有人能从中获得一点点益处,受个人认知所限,难免挂一漏万,还望大家海涵指正。
1. 国际学术组织、学术会议与学术论文
自然语言处理(natural language processing,NLP)在很大程度上与计算语言学(computational linguistics,CL)重合。与其他计算机学科类似,NLP/CL有一个属于自己的最权威的国际专业学会,叫做The Association for Computational Linguistics(ACL,URL:ACL Home Page),这个协会主办了NLP/CL领域最权威的国际会议,即ACL年会,ACL学会还会在北美和欧洲召开分年会,分别称为NAACL和EACL。除此之外,ACL学会下设多个特殊兴趣小组(special interest groups,SIGs),聚集了NLP/CL不同子领域的学者,性质类似一个大学校园的兴趣社团。其中比较有名的诸如SIGDAT(Linguistic data and corpus-based approaches to NLP)、SIGNLL(Natural Language Learning)等。这些SIGs也会召开一些国际学术会议,其中比较有名的就是SIGDAT组织的EMNLP(Conference on Empirical Methods on Natural Language Processing)和SIGNLL组织的CoNLL(Conference on Natural Language Learning)。此外还有一个International Committee on Computational Linguistics的老牌NLP/CL学术组织,它每两年组织一个称为International Conference on Computational Linguistics (COLING)的国际会议,也是NLP/CL的重要学术会议。NLP/CL的主要学术论文就分布在这些会议上。
作为NLP/CL领域的学者最大的幸福在于,ACL学会网站建立了称作ACL Anthology的页面(URL:ACL Anthology),支持该领域绝大部分国际学术会议论文的免费下载,甚至包含了其他组织主办的学术会议,例如COLING、IJCNLP等,并支持基于Google的全文检索功能,可谓一站在手,NLP论文我有。由于这个论文集合非常庞大,并且可以开放获取,很多学者也基于它开展研究,提供了更丰富的检索支持,具体入口可以参考ACL Anthology页面上方搜索框右侧的不同检索按钮。
与大部分计算机学科类似,由于技术发展迅速,NLP/CL领域更重视发表学术会议论文,原因是发表周期短,并可以通过会议进行交流。当然NLP/CL也有自己的旗舰学术期刊,发表过很多经典学术论文,那就是Computational Linguistics(URL:MIT Press Journals)。该期刊每期只有几篇文章,平均质量高于会议论文,时间允许的话值得及时追踪。此外,ACL学会为了提高学术影响力,也刚刚创办了Transactions of ACL(TACL,URL:Transactions of the Association for Computational Linguistics (ISSN: 2307-387X)),值得关注。值得一提的是这两份期刊也都是开放获取的。此外也有一些与NLP/CL有关的期刊,如ACM Transactions on Speech and Language Processing,ACM Transactions on Asian Language Information Processing,Journal of Quantitative Linguistics等等。
根据Google Scholar Metrics 2013年对NLP/CL学术期刊和会议的评价,ACL、EMNLP、NAACL、COLING、LREC、Computational Linguistics位于前5位,基本反映了本领域学者的关注程度。
NLP/CL作为交叉学科,其相关领域也值得关注。主要包括以下几个方面:(1)信息检索和数据挖掘领域。相关学术会议主要由美国计算机学会(ACM)主办,包括SIGIR、WWW、WSDM等;(2)人工智能领域。相关学术会议主要包括AAAI和IJCAI等,相关学术期刊主要包括Artificial Intelligence和Journal of AI Research;(3)机器学习领域,相关学术会议主要包括ICML,NIPS,AISTATS,UAI等,相关学术期刊主要包括Journal of Machine Learning Research(JMLR)和Machine Learning(ML)等。例如最近兴起的knowledge graph研究论文,就有相当一部分发表在人工智能和信息检索领域的会议和期刊上。实际上国内计算机学会(CCF)制定了“中国计算机学会推荐国际学术会议和期刊目录”(CCF推荐排名),通过这个列表,可以迅速了解每个领域的主要期刊与学术会议。
最后,值得一提的是,美国Hal Daumé III维护了一个natural language processing的博客(natural language processing blog),经常评论最新学术动态,值得关注。我经常看他关于ACL、NAACL等学术会议的参会感想和对论文的点评,很有启发。另外,ACL学会维护了一个Wiki页面(ACL Wiki),包含了大量NLP/CL的相关信息,如著名研究机构、历届会议录用率,等等,都是居家必备之良品,值得深挖。
2. 国内学术组织、学术会议与学术论文
与国际上相似,国内也有一个与NLP/CL相关的学会,叫做中国中文信息学会(URL:中国中文信息学会)。通过学会的理事名单(中国中文信息学会)基本可以了解国内从事NLP/CL的主要单位和学者。学会每年组织很多学术会议,例如全国计算语言学学术会议(CCL)、全国青年计算语言学研讨会(YCCL)、全国信息检索学术会议(CCIR)、全国机器翻译研讨会(CWMT),等等,是国内NLP/CL学者进行学术交流的重要平台。尤其值得一提的是,全国青年计算语言学研讨会是专门面向国内NLP/CL研究生的学术会议,从组织到审稿都由该领域研究生担任,非常有特色,也是NLP/CL同学们学术交流、快速成长的好去处。值得一提的是,2010年在北京召开的COLING以及2015年即将在北京召开的ACL,学会都是主要承办者,这也一定程度上反映了学会在国内NLP/CL领域的重要地位。此外,计算机学会中文信息技术专委会组织的自然语言处理与中文计算会议(NLP&CC)也是最近崛起的重要学术会议。中文信息学会主编了一份历史悠久的《中文信息学报》,是国内该领域的重要学术期刊,发表过很多篇重量级论文。此外,国内著名的《计算机学报》、《软件学报》等期刊上也经常有NLP/CL论文发表,值得关注。
过去几年,在水木社区BBS上开设的AI、NLP版面曾经是国内NLP/CL领域在线交流讨论的重要平台。这几年随着社会媒体的发展,越来越多学者转战新浪微博,有浓厚的交流氛围。如何找到这些学者呢,一个简单的方法就是在新浪微博搜索的“找人”功能中检索“自然语言处理”、 “计算语言学”、“信息检索”、“机器学习”等字样,马上就能跟过去只在论文中看到名字的老师同学们近距离交流了。还有一种办法,清华大学梁斌开发的“微博寻人”系统(清华大学信息检索组)可以检索每个领域的有影响力人士,因此也可以用来寻找NLP/CL领域的重要学者。值得一提的是,很多在国外任教的老师和求学的同学也活跃在新浪微博上,例如王威廉(Sina Visitor System)、李沐(Sina Visitor System)等,经常爆料业内新闻,值得关注。还有,国内NLP/CL的著名博客是52nlp(我爱自然语言处理),影响力比较大。总之,学术研究既需要苦练内功,也需要与人交流。所谓言者无意、听者有心,也许其他人的一句话就能点醒你苦思良久的问题。无疑,博客微博等提供了很好的交流平台,当然也注意不要沉迷哦。
3. 如何快速了解某个领域研究进展
最后简单说一下快速了解某领域研究进展的经验。你会发现,搜索引擎是查阅文献的重要工具,尤其是谷歌提供的Google Scholar,由于其庞大的索引量,将是我们披荆斩棘的利器。
当需要了解某个领域,如果能找到一篇该领域的最新研究综述,就省劲多了。最方便的方法还是在Google Scholar中搜索“领域名称 + survey / review / tutorial / 综述”来查找。也有一些出版社专门出版各领域的综述文章,例如NOW Publisher出版的Foundations and Trends系列,Morgan & Claypool Publisher出版的Synthesis Lectures on Human Language Technologies系列等。它们发表了很多热门方向的综述,如文档摘要、情感分析和意见挖掘、学习排序、语言模型等。
如果方向太新还没有相关综述,一般还可以查找该方向发表的最新论文,阅读它们的“相关工作”章节,顺着列出的参考文献,就基本能够了解相关研究脉络了。当然,还有很多其他办法,例如去http://videolectures.net上看著名学者在各大学术会议或暑期学校上做的tutorial报告,去直接咨询这个领域的研究者,等等。
㈣ 计算机网络领域有哪些顶级的学术会议
世界计算机算法最权威会议SODA
---全称ACM-SIAM Symposium on Discrete Algorithms。
世界计算机科学领域最顶级期刊JACM
---全称Journal of the Association for Computing Machinery,该期刊只发表世界计算机科学领域具有最重要意义的研究工作,每年仅收录30多篇。
世界数据库领域最顶级的期刊ACM TODS
---全称ACM Transactions on Database Systems,该期刊全年在全世界范围不过收录30篇高水平论文
世界计算机存储领域顶尖期刊ACM Transactions on Storage
---该期刊全年收录文章不超过20篇
世界程序语言设计领域顶级学术会议PLDI2007
---全称ACM SIGPLAN Conference on Programming Language Design and Implementation
世界物理学最权威学术刊PRL
---全称Physical Review Letter,国内大学计算机系目前只有清华计算机系发过两篇PRL
世界理论计算机领域顶级会议STOC
---全称ACM Symp on Theory of Computing
世界人工智能方面最顶级会议IJCAI
---全称International Joint Conferences on Artificial Intelligence
世界计算机视觉和模式识别领域顶级国际会CVPR
---全称IEEE Conference on Computer Vision and Pattern Recognition
世界信息检索领域顶级会议SIGIR
---全称ACM SIGIR Special Interest Group on Information Retrieval
世界数据挖掘领域最权威国际期刊IEEE TKDE
---全称IEEE Transactions on Knowledge and Data Engineering
世界数据库领域最顶级会议SIGMOD
---全称ACM's Special Interest Group on Management Of Data
世界计算机图形学最权威国际会议ACM SIGGRAPH
世界计算语言/自然语言处理领域最顶级会议ACL
---全称Association for Computational Linguistics
世界理论计算机科学顶级学术期刊Theoretical Computer Science
世界计算复杂性领域顶级会议CCC
---全称IEEE Conference on Computational Complexity
世界计算机视觉和模式识别领域顶尖期刊IEEE PAMI
---全称IEEE Transactions on Pattern Analysis and Machine Intelligence
世界集成电路设计领域最顶级会议DAC
---全称Design Automation Conference
世界人工智能领域顶级学术会议AAAI
---全称Association for the Advancement of Artificial Intelligence
世界互联网领域顶级会议WWW
---全称World Wide Web Conference
世界通信与计算机网络领域顶级学术会议Infocom
---全称IEEE Conference on Computer Communications,
世界信息科学理论顶级期刊IEEE Transactions on Information Theory
世界数据挖掘领域一流会议SDM
---全称SIAM International Conference on Data Mining
世界声学与信号处理一流会议ICASSP
---全称IEEE International Conference on Acoustics, Speech, and Signal Processing
世界计算机算法与理论领域一流会议STACS
---全称Symp on Theoretical Aspects of Computer Science
世界计算机理论科学领域一流会议ICALP
---全称International Colloquium on Automata, Languages and Programming
世界数据挖掘领域一流会议ICME
---全称IEEE International Conference on Multimedia & Expo
世界计算机图形学领域一流会议EuroGraphics
世界集成电路领域一流会议ISVLS
㈤ 如何看待第四版《CCF推荐期刊和会议目录》修订结果
印象中ACL跟NIPS是B类,刚才看了下链接,变A类,正名了,大快人心。
㈥ 数据挖掘,机器学习领域有哪些知名的期刊或会议
期刊
JMLR:ML领域的顶刊
ML:ML领域的另一个期刊,知名度不如jmlr,质量比较高专
PAMI:顶刊
会议
COLT:纯理属论的会
AAAI:AI领域的顶会
EMNLP,coling:自然语言处理领域会议
IJCAI:AI领域的顶会
ICCV,CVPR,ECCV CV领域的顶会,质量应该都非常高。
ACL:自然语言处理的顶会
CML:机器学习领域的顶会
NIPS:机器学习领域的顶会
-
㈦ 分析化学方面的权威期刊有哪些
1、《化学学报》
《化学学报》是1933年创办的中文学术期刊,曾用名《中国化学会会志》,月刊,中国化学会、中国科学院上海有机化学研究所主办,中国科学院主管。
学报刊载化学各学科领域基础研究和应用基础研究的原始性、首创性成果,涉及物理化学、无机化学、有机化学、分析化学和高分子化学等。
2、《化学研究与应用》
《化学研究与应用》创刊于1989年,是由四川省科学技术协会主管、四川省化学化工学会和四川大学主办的化学类综合性学术月刊。
《化学研究与应用》设有评论与综述、研究论文、研究简报、新技术与应用等栏目,读者对象是高校师生、科研院所的科研人员、厂矿企业的技术人员以及有关管理人员和情报工作者。
3、《化学通报》
《化学通报》创刊于1934年,是由中国科学院主管,中国化学会、中科院化学所主办的综合性学术期刊,主要刊登中国内外化学及交叉学科的进展,新的知识和技术以及最新科技成果。
4、《化学教育》
《化学教育》创刊于1980年,是由中国科学技术协主管,中国化学会、北京师范大学主办的国家级化学教育类学术期刊。
《化学教育》主要围绕化学基础学科,交流教育、教学经验和研究成果,开展关于课程、教材教法、实验技术的讨论,介绍化学和化学教学理论的新成就,报道中国国内外化学教育改革的进展和动向。
5、《化学进展》
《化学进展》是由中国科学院基础科学局、化学部、文献情报中心和国家自然科学基金委员会化学科学部共同主办,以刊登化学领域综述与评论性文章为主的学术性期刊。
㈧ 机器学习领域有哪些著名的期刊和会议
期刊
JMLR:ML领域的顶刊
ML:ML领域的另一个期刊,知名度不如jmlr,质量比较高
PAMI:顶刊
会议专
COLT:纯理论的会
AAAI:AI领域的顶会
EMNLP,coling:自然语属言处理领域会议
IJCAI:AI领域的顶会
ICCV,CVPR,ECCV CV领域的顶会,质量应该都非常高。
ACL:自然语言处理的顶会
CML:机器学习领域的顶会
NIPS:机器学习领域的顶会
㈨ 论文的期刊号怎么写
这个比较简单的,一般就是先选择查重系统,里面有对应的,比回如知网,维普,万方。查重答出来之后,就可以了,比如,快捷论文查重。去选择期刊,立即查重,之后就会有对应的编号出来。
然后你根据 题目、书名、出版时间,等写出来就可以了。