纤维光学论文
㈠ 麻烦大家帮忙翻译一下小论文
图2表明,所测自发布
光谱不同温度下有两个主要高峰期。
低频峰值(一)是窄的高
频率峰值( b )款。随着温度的增加,从
室温至80 ℃ ,两峰转向
更高的频率。同时,高度A峰增加
和山顶b deceases增加
温度。
显示的温度依赖性自发
第BS谱更清楚,中央频率
和高度的两峰为不同温度
显示在图。 3 。中央的频率VB在
图。双方的第3 A峰增加线性增加
温度随温度系数1.05
兆赫/ ℃为A峰和1.13兆赫/ ℃为高峰期乙
数字显示,第3 B的高度,两国间的分歧
峰。虽然高峰的既不是高峰期增加
线性与温度根据图。 2 ,
高度差( PD )的跌幅线性与温度
系数-0.06分贝/ ℃ 。
屋宇测量师在光纤是由相互作用
之间的光学模式和声模式,在纤维
核心。这散射,广泛应用于光纤分布式
遥感,因为这个过程是温度敏感
和应变。多峰结构自发
在纤维布提供的可能性,同时
测量温度和应变在纤维
布里渊分布式传感[ 11 ] 。这些实验
表明,该中频与小型的核心是,最好在这些
申请。妥善的设计可以提供几乎相等
高度的双高峰期的频谱。这一特点,避免
困难学士分峰[ 11 ] 。其次,温度
依赖的双重峰指出,
高度差的两个高峰,也可以被用来作为asensing参数,提供了一种新的可能性
提高性能和扩大功能
布里渊分布式光纤传感系统。
㈡ 高锟 什么期刊《光频率的介质纤维表面波导》
高锟教授获诺贝尔物理奖是因为他在“有关光在纤维中的传输以用于光学通信方面”做出了突破性成就。而非化学方面的成就
论文都是几十年前的事了 挺难的吧叫做《光频率的介质纤维表面波导》。
㈢ 帮我找一篇science或nature上关于纳米光学材料的文章
纳米光学材料在通讯领域的最新进展
摘要: 本文综述了纳米材料光学特性的研究进展, 以期使纳米材料的光学特性得到更加深入细致的研究。概述了纳米技术在通讯领域的应用,并着重介绍了国内外纳米光通信用纳米光电子器件的发展现状。
关键词:纳米光缆;纳米光电子学;纳米光导集成电路;纳米光通信
1.引言
纳米材料是纳米科学技术的一个重要的发展方向。纳米材料是指由极细晶粒组成, 特征维度尺寸在纳米量级(1~100nm ) 的固态材料。由于极细的晶粒, 大量处于晶界和晶粒内缺陷的中心原子以及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等, 纳米材料与同组成的微米晶体(体相) 材料相比, 在催化、光学、磁性、力学等方面具有许多奇异的性能, 因而成为材料科学和凝聚态物理领域中的研究热点。
纳米技术已成为当今研究领域中最富有活力、对未来经济和社会发展有着十分重要的研究对象。纳米科技正在推动人类社会产生巨大的变革,它不仅将促进人类认识的革命,而且将引发一系列新的科学技术。纳米技术对电子信息技术和光通信技术亦将产生重要影响。
2.国际发展状况
2. 1 整齐排列的交叉式纳米光缆线
美国化学学会会刊上刊登了由旅美学者、佐治亚理工学院王中林教授领导的研究小组,利用液态钾做催化剂,首次生长出整齐排列且具有“Y2形状”的氧化硅纳米光缆线。据介绍,该纳米光缆线的直径为10nm ,长度可达毫米级,线直而均匀并且是透明的,最重要的是该纳米光缆线在生长过程中自动由1 根分叉成为2 根,2 根可以分叉成4 根,依次继续分裂。氧化硅是传统光缆的主要组成材料,因此这些纳米线有可能会用来做纳米级的分叉光缆,形成纳米分光器。王中林等人的实验可以生产出大量而且结构均匀的分叉纳米线。他们的研究结果同时也对经典的“气相2液相2固相”(VLS) 纳米线生长原理提出了挑战。
VLS 原理认为一个催化剂颗粒只能长出1 根纳米线,而线的直径接近颗粒的大小。然而,他们在一滴约半毫米直径的钾丸上就可以生长出成千上万根整齐排列的纳米线。
2. 2 纳米级导电纤维
1999 年12 月,日本研究人员研制出一种仅有一个分子粗细的导电纤维,可谓世界上最细“电线”。这种导电纤维是由日本工业技术院物质工程工业技术中心研制出来的。它的直径仅3nm ,中心部分具有良好导电性的丁二炔链,四周包覆着糖的衍生物,并作为绝缘层,防止漏电。据分析,这种纳米级“电线”可以应用在超小型的电子元器件和微型机械上。
2. 3 纳米光导集成电路
日本NTT 公司尖端技术综合研究所于2001年开发成功了制作光导集成电路芯片的基础技术。NTT 公司的这家研究所采用先进加工技术,在硅芯片上制作出了可通过极细光束的通道(光导通路) ,使光束按直角方向转弯,将其封闭在极为狭小的场所之中。由于不将光信号转变成电信号,故这是直接处理光信号的纳米光导集成电路。NTT 的科学家在夹有玻璃薄膜的硅芯片上,按照与光的波长相同的间距开发微细加工技术。
在一排排的孔之间,形成了没有孔的线状区域。如果从线状区域的端部射入光线,则光通信中最常用的1. 3~1. 6μm 就基本没有什么光线向周围漏出。经检测后确认,这部分光是沿着线传播的。只要能找出最优的线状区域宽度,就能成功地使光通过。这是日本NTT 公司尖端技术研究所在光芯片技术上取得的重要成果。
2. 4 纳米聚合体电子器件
将打印机、电脑和视屏一股脑地折起来装入你的钱包、这就是以色列专家为人们展现的纳米聚合体电子器件应用的一个未来景象。以色列技术工程学院和希伯来大学曾宣布,他们在研究具有高能信息传输功能的有机发光二极管中取得了最新突破,为实现这一梦想迈出了第一步。相关成果刊登在新出版的Science 杂志上。使塑料发射近红外光将是把一个不可能的未来世界变成现实的开始。研究初期,以色列科学家采用铒原子渗入有机材料的方法,结果得到的红外线非常弱,转化效率仅有0. 01 %。后来,此项研究的主持者之一,以色列技术工程学院的特斯勒博士和希伯莱大学的班尼博士共同提出了利用一种制造聚合体所需的纳米粒子结构产生近红外光的研究思路。研究中,他们将化学合成的纳米粒子和与其共轭的聚合体组合制成二极管发光作用区,首次实现了具有应用价值,转化效率达2 %~3 %的有机近红外发光二极管。目前,他们正致力开发第二代效率更高,波段更宽的新器件。特斯勒博士称:“最近有机近红外发光二极管的研究取得了重大突破,已为未来的光纤通信器件采用几乎所有可能的有机材料奠定了基础。将来每家只需一个光纤传输器就可使家用网络、电视、可视电话与全球连接。高效、廉价的大容量有机信息传输设备的诞生正使这一构想变为可能”。
2. 5新型纳米激光器提高电脑信息存储量
2003年1月16日的Nature杂志报道,美国哈佛大学已成功开发出一种新型纳米激光器,比人的头发丝还细千倍,可自动调控开关。将其安装于微芯片上,能提高计算机磁盘和光子计算机的信息存储量,加强信息技术的集成化发展。这种新型激光器实际上是以半导体硫化镉为原料制成的纳米线,直径仅为1/ 10000mm。研究人员将硫化镉纳米线安装在涂有硅材料的基底上,制成一个回路。接通电源后,研究人员观察到,在一定电压下,电流通过硅材料流向硫化镉纳米线,纳米线的另一端随即发出蓝绿色的光。随着电流强度增大,光的着色变得单一,波长也相当短。由于白炽灯泡和二极管发出的光波长都很长,因此研究人员断定硫化镉纳米线发出的光是激光。在随后的实验中,研究人员使用不同的半导体材料,由此制成的激光器发出的激光颜色也各不相同,氮化镓纳米线发出蓝色到紫外的光,磷化铟纳米线发出红外光。据报道,最早的纳米激光器是由美国加州大学伯克利分校的科学家于2001 年制造出来的,当时使用的是氧化锌纳米线,可发射紫外光,经过调整后还能发射从蓝色到深紫外的光。但美中不足的是,只有用另一束激光将纳米线中的氧化锌晶体激活时,氧化锌晶体才会发射出激光。因此,新型纳米激光器的技术关键就在于,它具备电子自动开关的性能,无需借助外力激活。由于光纤激光技术目前广泛应用于信息通信领域,这一新的技术成果无疑会使纳米激光器的实用性大为增强。
3.国内发展状况
为了在纳米光电技术领域占有一席之地,我国在纳米电子技术研究的基础上开展了纳米光电子技术研究,相继建立了相关的专门实验室,例如北京市在2000 年就在首都师范大学建成纳米光电子学重点实验室。其发展和目标是:发展纳米材料和纳米技术理论和实验研究。着重于其光电子学、光谱学特性的研究和学科交叉研究,突出实验室的光电子学研究特色,为新型纳米材料和纳米技术的开发提供科学基础;进而解决与纳米材料和纳米技术产业紧密相关的重要科学技术问题。该实验室的主要研究方向为:纳米超薄膜传感器件与分子器件的光电子学研究;纳米结构与超分子结构光电子学研究;中药纳米化应用研究;富勒烯衍生物合成;富勒烯材料光电特性研究;金属半导体米粒子电磁特性研究;光子作探针的分子吸附动力学及应用研究;原子分子团簇材料理论与计算机模拟研究等。我国纳米科技的大部分研究工作主要集中在硬件条件要求不太高的基础研究领域,涉及纳米主流技术高、精、尖的研究内容不多,特别是一些具有重要应用前景的技术研究比较薄弱,在纳米材料、纳米结构的设计、制造和控制以及实用化方面与国际先进水平存在较大的差距。
5.结 论
在信息通信领域,光通信技术已经改变了人们的生产和生活方式,特别是信息高速公路的建设,为人们掌握信息、获取信息、快速传递信息创造了有利条件。未来光通信将向光孤子通信、高速量子保密通信、紫外通信和纳米光通信方向发展。目前,制作纳米光电子器件有两条技术途径: (1) 自上而下路线的将尺寸逐渐变小的方法; (2) 自下而上路线的利用有机/ 无机分子组装功能器件的方法。要研究和开发出实用的纳米光电子器件,除了必须解决单个纳米光电子器件的工作原理、纳米光电子材料和纳米加工技术问题外,还必须解决纳米光电子器件的集成技术以及与外部的连接技术。显然,纳米光电子技术和纳米光电子学是纳米光电子器件研究的核心技术,而纳米光通信技术的关键技术是纳米光电器件的研制。
人类以驾驭原子能进入现代社会,以制造和利用单晶基础半导体进入电脑与网络信息时代。进入20 世纪90 年代,全球以IT 为核心的高新技术产业得到了迅猛发展,它将由新兴产业逐步成为主导产业。但是,真正实现使用以纳米电脑为基础的信息高速公路,离不开纳米光通信技术,它将使人类真正进入信息时代,并将领导下一场工业革命,以推动社会的发展。
㈣ 跪求大学物理波动光学论文!!!急!!!!
下面能当波动光学说明文
wave optics
以波动理论研究光的传播及光与物质相互作用的光学分支。17世纪,R.胡克和C.惠更斯创立了光的波动说。惠更斯曾利用波前概念正确解释了光的反射定律、折射定律和晶体中的双折射现象。这一时期,人们还发现了一些与光的波动性有关的光学现象,例如F.M.格里马尔迪首先发现光遇障碍物时将偏离直线传播,他把此现象起名为“衍射”。胡克和R.玻意耳分别观察到现称之为牛顿环的干涉现象。这些发现成为波动光学发展史的起点。17世纪以后的一百多年间,光的微粒说(见光的二象性)一直占统治地位,波动说则不为多数人所接受,直到进入19世纪后,光的波动理论才得到迅速发展。
1800年,T.杨提出了反对微粒说的几条论据,首次提出干涉这一术语,并分析了水波和声波叠加后产生的干涉现象。杨于1801年最先用双缝演示了光的干涉现象(见杨氏实验),第一次提出波长概念,并成功地测量了光波波长。他还用干涉原理解释了白光照射下薄膜呈现的颜色。1809年E.L.马吕斯发现了反射时的偏振现象(见布儒斯特定律),随后A.-J.菲涅耳和D.F.J.阿拉戈利用杨氏实验装置完成了线偏振光的叠加实验,杨和菲涅耳借助于光为横波的假设成功地解释了这个实验。1815年,菲涅耳建立了惠更斯-菲涅耳原理,他用此原理计算了各种类型的孔和直边的衍射图样,令人信服地解释了衍射现象。1818年关于阿拉戈斑(见菲涅耳衍射)的争论更加强了菲涅耳衍射理论的地位。至此,用光的波动理论解释光的干涉、衍射和偏振等现象时均获得了巨大成功,从而牢固地确立了波动理论的地位。
19世纪60年代,J.C.麦克斯韦建立了统一电磁场理论,预言了电磁波的存在并给出了电磁波的波速公式。随后H.R.赫兹用实验方法产生了电磁波。光与电磁现象的一致性使人们确信光是电磁波的一种,光的古典波动理论与电磁理论融成了一体,产生了光的电磁理论。把电磁理论应用于晶体,对光在晶体中的传播规律给出了严格而圆满的解释。19世纪末,H.A.洛伦兹创立了电子论,他把物质的宏观性质归结为构成物质的电子的集体行为,电磁波的作用使带电粒子产生受迫振动并产生次级电磁波,根据这一模型解释了光的吸收、色散和散射等分子光学现象。这种经典的电磁理论并非十全十美,因在关于光与物质相互作用的问题上涉及微观粒子的行为,必须用量子理论才能得到彻底的解决。
波动光学的研究成果使人们对光的本性的认识得到了深化。在应用领域,以干涉原理为基础的干涉计量术为人们提供了精密测量和检验的手段(见干涉仪),其精度提高到前所未有的程度;衍射理论指出了提高光学仪器分辨本领的途径(见夫琅和费衍射);衍射光栅已成为分离光谱线以进行光谱分析的重要色散元件;各种偏振器件和仪器用来对岩矿晶体进行检验和测量,等等。所有这些构成了应用光学的主要内容。
20世纪50年代开始,特别在激光器问世后,波动光学又派生出傅里叶光学、纤维光学和非线性光学等新分支,大大地扩展了波动光学的研究和应用范围。
㈤ Proceedings of SPIE 是什么东东
你好,Proceedings of SPIE大致如下:
SPIE 一个学术组织~
他们有一系列的 期刊及会议~~
出版在 Proceedings of SPIE 的都是会议论文
SPIE的会议论文集一般都是EI检索,不过你还是要自己确认一下。
SPIE第29届年会在美国圣地亚哥召开
这是一个国际性学术会议,这次会议由21个专业技术会议组成,可分为五类。它们是:
(一)纤维光学方面五个会议 1.纤维光学:短程与长程的测量及应用第三届会议发表论文30篇 2.纤维光学及激光传感器第三届会议(66篇) 3.纤维光学在医学及生物学中的应用(14篇) 4.光纤系统中的相千技术(9篇) 5.光纤藕合器,联接器,及联接技术(25篇》
(二)经典与数学光学方面五个会该 1.大口径光学技术(48篇) 2.多层结构x光光学成像薄膜应用(62篇) 3.光学工程应用中的衍射现象(14篇) 4.上转换光学第二届会议(16篇) 5.国际斑纹会议(50篇)
(三)伯息处理,成像,照相技术方面五个会议 1.实时信息处理第八届会议(31篇)
㈥ 急!求高手翻译纺织方面论文!!不要在线翻译!!
韧皮纤维,包括胡麻,苎麻、大麻和黄麻是根据纤维素的自然蔬菜纤维。
他们从维管束为食物和水传导使用在生存植物中的植物词根获得。 纤维用水泥涂被修建长的厚壁的细胞一起重叠和由合成纤维的材料形成也许跑植物词根的整个长度的连续的子线。 由浸泡或使脱胶的过程,韧皮纤维子线可以从多孔被发布,并且由胡麻和苎麻做的植物词根服装的木质的组织特别适用于热的气候; 而人们越来越接受“回归到自然”趋向和环境保护,这些纤维可能与纤维的其他类型也混和提供织品物产巨大品种。 因此亚麻布和苎麻织品继续赢得在国际纺织品市场上的声望。
胡麻,是根据纤维素的自然蔬菜纤维,来自告诉属于家庭亚麻科的Linum usitatissimum的一棵每年植物的词根。 它在许多温度和太阳热带地区增长并且是最重要的韧皮纤维,与用途的长的传统。 胡麻纤维在词根的内在吠声的之内捆绑在。 因此必须拳头贬低他们促进木质的核心的机械撤除以便允许光学纤维束纤维丛进一步细分和为纺织十分地优良成为其他韧皮纤维。 胡麻被服从对叫作浸泡的一个生物学过程,真菌和细菌通过藏匿高度具体酵素选择性地攻击粘合材料,去除纤维形式植物词根。
浸泡的过程的拖曳类型为胡麻纤维主要被使用,露水浸泡是最共同的。 在收获以后胡麻植物在领域被传播3-7个星期,在期间浸泡的有机体在秸杆绑的温暖,潮湿条件增长。 作为可以容易地机械化的一个自然风干的技术,露水浸泡可能替换胡麻秸杆在水坦克几天被浸泡的更旧的水浸泡的过程。 水浸泡可能生产美好的湿转动的毛线的更加美好的纤维。 当烘干时被浸泡的秸杆,光学纤维束纤维丛收缩远离易碎的木质的痛处。 在穿过击碎以后路辗,秸杆被服从对负担由做远离纤维子线的木质的物质秋天的涡轮叶片。 纤维分离的这个过程称“珠食”。 胡麻秸杆包含根据干燥,被浸泡的秸杆重量的纤维25-30_。
有几个词认不识
㈦ 光导纤维是如何发明的
光通信是一门既古老又年轻的科学技术。说它古老,是因为早在古代就有利用光传递信息的记录。我国的周朝,就曾经用“烽燧”来传递敌人入侵的信息,距今已三千余年。航行中利用旗语和灯光传递信息,也有几百年了。1880年发明电话的贝尔就曾经进行过光通信的实验。
可见,用光传递信息远比用电传递信息的历史来得悠久,当然所有这些都只是在空气中传递光的信息。说它年轻,是因为光通信真正成为现实,还是近三十多年的事情,只是在激光器出现之后,电缆通信和无线电通信已显示出许多不足,采用光学方法代替电学方法传递信息才成为当务之急。于是,以光导纤维(简称光纤)为核心的光纤通信技术就应运而生。
作为一门高新科技,光纤通信可以说是物理学、化学、电子学、材料科学等学科的综合产物,在当代高新科技中具有特殊的地位。我国国家科学发展规划,把光纤通信和计算机、生物工程等项目并列为技术革命的重点,就可见其重要性。
光纤通信是现代信息传输的重要方法之一。它的特点是:容量大,保密特性好,抗干扰性能强,中继距离大,节省铜材等。
光纤一般是由同心圆柱形的双层透明介质,主要是石英玻璃之类的介质组成,石英玻璃实际上就是二氧化硅(SiO2)。介质的内层叫纤芯,外层叫包层,纤芯的折射率高于包层,光纤拉成细丝,其直径约为数微米,包层直径为125微米。多根光纤组成光缆,结构与电缆差不多,其制造方法和环境要求也与电缆类似。
值得特别向读者介绍的是,英籍华裔科学家高锟(Charles Kao)的开创性工作对这项重大课题的解决具有决定性的意义。
1966年,高锟和他的合作者霍克汉(G.A.Hockham)在进行一系列理论和实验研究之后,发表了一篇著名论文,提出用光纤进行长距离通信的建议。他们预言光波导材料的衰减率有可能从当时的每千米1 000分贝(即1 000 dB/km)降低到每千米20分贝(即20 dB/km),他们证明单模光纤每秒有可能传送10亿位数字信号,并论证了单模光纤的要求和特性。这两位科学家以敏锐的洞察力,勾画出了尚未出现的技术蓝图。他们认为最艰难的任务是研制损耗低于20 dB/km的光纤材料。这一指标在1966年实在难以实现,但是在高锟的激励下,仅仅过了4年,就有人宣布达到了这个指标。从此,光纤通信技术蓬勃发展,而高锟和霍克汉的这篇著名论文就成了光纤通信领域的里程碑。
高锟1933年生于上海,1957年获伦敦大学物理学士学位,1965年获博士学位,1957~1960年任英国标准电话和电缆公司工程师,1960~1970年转到英国标准电信实验室(STL)任职。就在这里,他和霍克汉在微波技术专家卡博瓦克(T.Karbowiak)的领导下,对微波波导开展研究,并在卡博瓦克引导下,转向光波波导的研究。
应该说明,纤维光学并非他们首创。大家知道,光从光密媒质(折射率大)射向光疏媒质(折射率小)时,如果入射角大于临界角,就会发生全反射。光导纤维就是根据这个原理。早在1910年,著名物理学家德拜(P.Debye)和他的合作者洪德罗斯(Hondros)就对介质波导做了详尽的理论分析。到了50年代,用玻璃做成可弯曲的光束管道,可以使医生能够看到人体内部,这就是所谓的内窥镜,直到现在还有广泛应用。然而,内窥镜采用的光纤是玻璃制品,其衰减率大于1000dB/km,只适用于长度不超过1~2米的仪器传光传像,根本不能用于长距离通信。即使在1960年发明了激光器之后,用激光器作光源,由于光纤的衰减率如此之大,也无法利用光纤进行长距离通信。
激光器的发明使人们对历史悠久的光学刮目相看。完全有理由相信,以激光为主体的光通信时代即将到来,这一认识促使人们加强对光通信的研究。当时微波已经是远距离通信,包括电视和电话的重要媒介。而微波既可经空气传送,也可经波导传输。人们很自然地想到激光也应该能够像微波那样,经空气直接传送或经空腔光学波导传输。人们普遍认为,只要把微波技术扩展到光传输,就可实现远距离光通信。例如,美国贝尔电话公司的贝尔实验室就在致力于这方面的研究,当时高容量电话系统是靠微波在一系列塔架之间从空气中传送,就像多年来一直在用的微波电视传送一样,贝尔实验室的科学家用激光器做了一个模拟器,建在新泽西州的赫尔姆戴尔(Helmdel)的主实验室和附近的克罗福德山实验室的屋顶之间,经过多次试验,没有取得预期效果。他们很快发现,空气并不像看起来那样纯净,雨、雪或浓雾都能使信号强度大大衰减,例如:经过2.6km的路程信号竟衰减了60dB以上。显然,从空中直接传送光信号很难满足高容量通信的需要。
贝尔实验室同时还在进行另一套试验方案。从1950年开始,微波工程师米勒(S.E.Miller)就带领一个小组在克罗福德山研制一种空腔波导,专门用于60GHz的微波(频率为60GHz的微波,其波长约为5毫米,所以也叫毫米波),这种微波在空气中衰减很快,因此采用波导管进行传输。他们的毫米波导管内径是5cm,传输的是单模,以毫米波为载体,把语言数字化,并通过毫米波导管传输,其能力为160Mbit/s(兆比特/秒)。米勒小组相信,把空腔波导概念推广到光波领域,有可能形成下一代新的通信技术。许多有名望的通信工程师也都是这样想的。
然而,问题并不像人们想象的那样简单。大家知道,光波波长约为1微米,比毫米波波长小千倍,如果光波波导按比例缩小,就必须把空腔波导管的直径做成10微米以下,而这个要求是难以实现的。如果波导管的直径过大,传送的光波只能是多模的,这样就很不利于光的传播。但米勒小组并不把这当成障碍,理论上讲,他们只需要在波导管中增加许多透镜,周期性地让激光束沿着波导管重新聚焦,就可以克服这一困难。为了消除固体透镜表面不可避免的反射,贝尔实验室试验成功了气体透镜,用波导管中心冷空气和管壁热空气折射率的不同进行聚焦,虽然仍有一些工程问题,但是基本概念已经很清楚了。于是,美国的贝尔实验室就准备在条件成熟后推出以空腔波导为传输手段的光通信技术。这时已是60年代中期了。
英国的标准电信实验室(STL)的里弗斯(A.H.Reeves)对通信技术的发展途径有独特的见解。他由于在1937年发明了脉码调制而闻名于世。里弗斯在激光出现时已经是58岁的人了。他富有远见和创造性,在梅曼发明第一台激光器之前就对光通信发生了兴趣,并向正在领导STL微波波导研究的工程师卡博瓦克提出光学研究任务。上面我们提到的高锟和霍克汉就在卡博瓦克的小组中工作。开始他们也是跟美国同行那样,把透镜放在空腔光波导管中进行实验,他们用柔性塑料制成固体介质波导管。这种固体介质波导管在微波系统中可以使用。如果它们的直径按波长的比例缩小,应该也能在光波长范围内工作。然而,用比头发丝还要细的塑料棒传送光波实际上会遇到许多难以解决的问题。
1963年卡博瓦克安排高锟和霍克汉研究介质光波导,当时30岁的高锟正在写关于波导研究的博士论文,霍克汉刚大学毕业两年,卡博瓦克认为光导纤维是有前途的,但是他担心材料损耗,所以他鼓励高锟和霍克汉研究他自己设计的一种新颖的平面波导,在这种平面波导中光大体上是沿着外侧传播。高锟和霍克汉测试了卡博瓦克的波导,发现它对弯曲非常敏感,而这正是毫米波导管和空腔光波导管都无法避免的问题。
1964年末,新南威尔士大学授予卡博瓦克电气工程的教授职位,这是晋升的大好机会,于是卡博瓦克离开了英国的标准电信实验室,把光学研究课题交给高锟。高锟和霍克汉并没有拘泥于原有的方案,而是把注意力转向光导纤维。他们知道,玻璃纤维细小而且宜于弯曲,比起贝尔实验室的空腔光导管来有很多优越的地方。
高锟和霍克汉吸取了斯尼彻(E.Snitzer)的意见,认识到如果包层的折射率比纤芯正好小1%,就可以在较大的光纤中进行单模传输,包层不仅增加了纤维的直径,而且改变了波导的特性,使单模有可能在直径10倍于波长的纤芯中传送。
高锟集中精力于难以解决的光学损耗问题,他向光学专家请教,发现杂质导致绝大部分吸收,如果使玻璃变纯将大大减少损耗,剩下的就是约1dB/km的散射损耗,这个数字是缪勒(C.Maurer)在一篇文章中导出的,缪勒后来领导康宁(Corning)玻璃公司做出了首批低耗纤维。霍克汉则致力于研究光纤所需的均匀性。大多数波导系统对直径的微小变化极为敏感,而这变化在真正制造过程中几乎不可避免,但是霍克汉证明机械公差10%足以给出大约1GHz的带宽。
1965年11月他们向在伦敦的电气工程师协会(IEE)递交了共同署名的论文,略加修改后,发表在1966年7月的IEE会刊上。论文题名为《用于光频的介质纤维表面波导》。他们在结论中明确地提出了用光导纤维的方案。在高锟两人的论文激励下,美国康宁公司在1970年率先研制出了衰减率低于20dB/km的石英光导纤维,恰好这一年适合于光纤通信之用的光源——双异质结半导体激光器问世。这两项技术的突破立即掀起了研制和使用光纤通信的高潮。此后,光纤的衰减率不断降低,1974年为2dB/km,1979年最低达到了0.2dB/km,而半导体激光器的寿命则大大增加,刚开始只有几小时,1975年为10万小时,1979年则达100万小时。1977年贝尔实验室首先完成了光纤通信的现场试验,全面制备了光纤通信的配套器件,完善了生产工艺,从此光纤通信进入了实用阶段。
80年代初,世界各地开通的光纤通信线路已达上千条,除用作电话通信外,也用于数据传输、闭路电视、工业控制、监测以及军事目的。1988年第一条跨越大西洋海底,连接美国东海岸同欧洲大陆的光纤开通。1989年4月,从美国西海岸经夏威夷及关岛,联结日本及菲律宾的跨太平洋海底光缆开通了服务,后来又有第二条跨大西洋海底光缆投入使用。在陆地上的推广应用更是日新月异。许多国家相继宣布,干线大容量通信线路以后不再新建同轴电缆,完全铺设光缆。我国干线系统中比较著名的有南沿海工程,沪宁汉干线,芜湖至九江,京汉广干线等。短距离系统更是不计其数。在武汉、上海、西安、北京、天津等地建立了几家规模较大,水平较高的光纤、光缆制造厂,另外还有一批与之配套的光电子器件工厂及研究所,为光纤通信在我国广泛推广应用打下了基础。
时至今日,无线电外差通信正向光外差通信发展,通信设备技术正由微电子集成向光电子集成发展,单频、单波长、单通道正向多波长、多通道、微波负载、波密集光通信发展,电缆通信正在被光缆通信取代。
。Hartog,A.H.,1983年“分布式温度传感器基于Liquid-Core光纤国立LT-1:498-509光波1995,16(2)。
2。Barnoski M.K.和詹森,丁镛,1976年,“Fiber-Waveguides调查:设计了一种新颖的技术,李波。衰减特性”Opt.,15:2112-2115。
3。论文Dakin苏达权等,1985,“温”斯托曼派发陈鹰。第三个智力。在选择之。光纤传感器,post-deadline圣地牙哥,2月(纸)
4。Hartog等,A.H.高庆宇,1985年,“分布式温度传感在实芯纤维”电子。21:1061-3(1)。
5。Farries,M。C和罗杰斯,一个。J,刺激、分布式传感使用984路光纤拉曼相互作用,陈鹰。第二智力。在光纤传感器数值,pp121-32斯图加特,纸4.5。
6。Dakin欢欣,1987年,“分布式光纤温度传感器使用光学克尔效应”,陈鹰。变动,纤维光学传感器的798艺术,pp149-156 II。
7。Hartog,A.H.,1995,“分布式光纤温度传感器技术和应用的电力工业”,电力工程,杂志6月刊上。
8。1995年,A.H. Hartog光纤温度传感器监测Wakamatsu”,“现代电力系统,pp25-28 2月刊上。