聚碳酸酯论文
1. 丁涛的代表性论文:
[1] Synthesis, characterization and in vitro degradation study of a novel and rapidly degradable elastomer. Polymer Degradation and Stability. 2006, 91: 733-739
Ding Tao, Liu Quanyong, Shi Rui, Tian Ming, et al.
[2] Synthesis, characterization and in vitro degradation of a novel degradable poly((1,2-propanediol-sebacate)-citrate bioelastomer. Polymer Degradation and Stability, 2007, 92: 389-396
Lei Lijuan, Ding Tao*, Shi Rui, Liu Quanyong, et al.
[3] In vitro degradation and swelling behaviour of rubbery thermoplastic starch in simulated body and simulated saliva fluid and effects of the degradation procts on cells. Polymer Degradation and Stability. 2006,91(12): 3289-3300.
Shi Rui, Ding Tao , Liu Quanyong, Han Yanming, et al.
[4] Preparation, Characterization of A Biodegradable Polyester Elastomer with Thermal-processing ability. Journal of Applied Polymer Science. 2005, 98: 2033-2041
Liu Quanyong, Tian Ming, Ding Tao, Shi Rui, Zhang Liqun, et al.
[5] Ageing of soft thermoplastic starch with high glycerol content。Journal of Applied Polymer Science Volume 103, Issue 1, Date: 5 January 2007, Pages: 574-586
Shi Rui, Liu Quanyong, Ding Tao, Han Yanming, et al.
[6] 新型可生物降解弹性体的制备[7] 与性能研究,[8] 合成橡胶工业. 2007, 30(1):1-6
丁涛,石锐,雷丽娟,刘全勇,田明,张立群.
[9] 生物弹性体的研究进展——新型生物弹性体. 合成橡胶工业.2006, 29(5):322-326
丁涛, 刘全勇, 石锐, 刘力, 张立群.等
[10] 生物弹性体的研究进展——聚氨酯. 合成橡胶工业.2006, 29(4):239-244
石锐,丁涛, 刘全勇, 刘力, 张立群.等
[11] 生物弹性体的研究进展——硅橡胶. 合成橡胶工业.2006, 29(3):165-169
石锐,丁涛, 刘全勇, 刘力, 张立群.等
[12] 聚碳酸酯无卤阻燃剂进展. 现代化工, 2004, 24(10):10-14
丁涛, 田明, 刘力, 黄宏海, 张立群. (EI收录)
[13] 一种新型含磷-溴-氮阻燃剂的合成. 化学研究 2001,12(2):33-36
丁涛, 刘治国, 房晓敏, 于丽等.
[14] 甘油含量对热塑性淀粉结构及性能的影响. 塑料, 2006,35(1):44-49
石锐,丁涛, 刘全勇, 张立群, 陈大福, 田伟.
[15] 含磷-溴-氮阻燃剂的合成与应用研究. 现代化工, 2001.21(12):38-40
刘治国,丁涛, 贾修伟,王素敏(EI收录)
2. 化学论文部分内容翻译,求教
the synthesis of novel polycarbonate
Abstract: aliphatic polycarbonate is biodegradable, it has attracted more and more attention in medical fields owing to its surface corrosible degradative mechanism and good biological compatibility as biological material. The cyclic carbonate monomer 5,5- di-methoxy carbonyl -1,3-dioxane -2- ketone is synthetised by the reaction of 2,2- dihydroxy methyl malonic acid dimethyl ester with chloroformate ethyl ester,catalysted by stannous octoate .The new polycarbonate is achieved though bulk ring-opening polymerization at different temperatures. The structure of monomer and polymer is characterizd by IR, 1H NMR and 13C NMR Spectra. The results show that the yield of ring opening polymerization reaction and molecular weight increase with temperature, but the ring-openingdecarboxylation reaction will certainly occur when temperature is higher than 100℃. It is concluded that the suitableconditions for the polymerization reaction are: reaction temperature 90 ℃, reaction time 12h, thus decarboxylation reaction hardly occurs in the the polymerizating process .
Keywords: hex-cyclic carbonate; ring-opening polymerization; polycarbonate
3. 要写一篇“聚酯合成工艺及其应用发展现状”的论文,望大家推荐几本靠谱的有关书籍或文章(英语文献亦可)
工程塑料改性技术作者:出版:化学工业 出版日期:2007年12月 本书系统介绍了内工程塑容料以及工程塑料改性技术的基本内容、进展和未来趋势,包括聚酰胺、聚碳酸酯、聚甲醛、聚苯醚、热塑性聚酯、特种工程塑料等的改性基本理论、改性助剂、改性工程与工艺,以及改性工程塑料的应用等。本书可供从事工程塑料研发、生产等技术人员、管理人员阅读,也可供大专院校相关专业的师生参考。新华书店网店新华文轩有卖的
4. 塑料涂料论文
塑料涂料的研究现状与展望
摘要:从塑料涂料的成膜基料、涂料性能、施工应用等方面,阐述了国内外塑料涂料的研究现状,并提出了塑料
涂料研究存在的问题与发展要求。
关键词:塑料涂料;涂料性能;涂料应用;现状与展望
0引言
随着石油化工与煤化工的发展,高分子材料的合成技术
与新材料的推广应用不断延伸,塑料作为新型非金属材料,在
抗张强度、韧性、尺寸稳定性等方面取得一系列进展。传统的
塑料制品表面抗老化、抗静电、耐划伤、颜填料印痕等问题与
新型塑料制品的功能化、装饰性、安全性等问题共同成为塑料
涂料与涂装的中心内容。塑料的一个重要发展课题就是合金
化。所谓合金化,实际上是多种高分子材料的物理混合,利用
各种高分子材料的优点,互相补充。然而合金化给涂装带来
了新的问题———涂层材料的成膜物树脂与塑料底材之间的匹
配性,正因为如此,目前塑料涂料采用的成膜树脂将日趋多组
分、多官能团化,同时塑料涂料的环境影响也日益受到关注,
加之新型功能性颜填料与助剂的采用,塑料涂料已以全新的
面貌呈现在人们面前。
1成膜基料的官能化趋势
鉴于塑料底材结构的复合化,与传统的塑料相比,单纯从
氢键值、溶解度参数等角度考察单一树脂与塑料底材之间的
相容性已十分困难。作者在塑料涂装厂对ABS塑料进行涂装
过程中发现,厂方声称的ABS基料耐溶剂性能极差,当涂料中
含有一定的芳烃溶剂时,涂膜干燥过程中出现细细的“银纹”。
经了解,塑料本身掺入大量高抗冲聚苯乙烯改性,而这种情况
目前在塑料涂装市场上非常多见,现在能遵循的规律是表面
张力与结构相似程度,只有成膜物的表面张力比底材低,且成
膜树脂与底材相比具有一定的相容性,涂膜才能附着在塑料
表面。因此,具有低极性的聚丁二烯、聚丙烯酸酯与醇酸改性
氯代烃聚合物等对很多塑料乃至塑料合金都具有极佳的亲
合性。
对于聚乙烯与聚丙烯塑料,氯化聚烯烃的改性仍是目前
较佳的选择。Muenster等[1]用混有高密度聚乙烯的聚亚乙烯
基氯化物作为成膜基料对聚乙烯复合塑料具有极好的粘附
性。Lami等[2]直接采用氯化聚乙烯涂敷在聚乙烯表面,然后
与聚氨酯配套。Menovcik等[3]利用羟基官能化烯烃聚合物与
可与羟基反应的化合物反应制得对烯烃具有良好附着的附着
力促进树脂。巴斯夫公司则利用对聚烯烃进行聚氨酯改性,
在确保对聚烯烃底材附着力的同时,与其他树脂的配套相容
性也得到保证[4]。上述改性树脂从某种意义上说,解决附着
力的根本原因在于结构的相似相亲。Eaztman公司的cp343
系列产品、中海油常州涂料化工研究院的P-18系列等产品
均为氯化烯烃的接枝改性物。目前氯化聚烯烃的丙烯酸酯、
马来酸酐等改性极其活跃,而王小逸等[5]以双戊烯烃聚合物
为母体,丙烯酸单体在引发剂作用下接枝形成苯乙烯-双戊烯
烃共聚物,实际上是利用聚戊二烯在结构上与聚烯烃塑料的
相似性和低表面能状态,所以说,成膜物主体结构与塑料基体
结构的相似性仍是塑料涂料成膜树脂合成追寻的重要手段。
在研究中曾发现,某些羟基丙烯酸树脂作为基料的涂料,利用
脂肪族异氰酸酯作为交联剂在特定的ABS塑料表面涂覆(目
前市场多为合金)几乎没有附着力,而当交联剂改为芳香族异
氰酸酯时,附着力却十分优异。笔者认为,根本原因在于交联
剂转变为芳香族异氰酸酯时,由于成膜后树脂中苯环结构增
多,结构的相似性(多体现在溶解度参数与氢键值上的相近)
增强,所以附着牢度增大。
同样作为结构的相似相亲,环氧-聚酰胺在尼龙底材上的
润湿就是利用涂膜中的聚酰胺与尼龙结构的相似性而产生强
附着[6]。而各种聚氨酯成膜物(丙烯酸聚氨酯、聚酯聚氨酯
等)在聚氨酯塑料上的附着同样与结构相似相关联[7-8]。
除传统的溶剂型合成方法外,等离子聚合[8]、乳液聚合也
成为塑料涂料成膜树脂合成的新方法,而乳液聚合技术是伴
随水性化技术的发展而发展的,在塑料涂料水性化方面起了
相当大的作用。
作为与光固化配套的底漆,塑料涂料用基体树脂除传统
的羟基丙烯酸类外,高软化点、耐溶剂侵蚀的热塑性丙烯酸树
脂成为人们关注的焦点之一。为了提高热塑性树脂的耐溶剂
性,—CN基或微交联特征的硅氧烷的存在是必要的,有时为了
解决配套性,可能在树脂中掺入纤维素类树脂。
总之,塑料涂料用成膜树脂如同塑料本身的复合化一样,
基料组分从单一结构向多组分结构拓展,甚至采用不同软化
点的同类型树脂复合体。依靠单一成膜树脂已很难满足现代
塑料涂料的发展要求,而通过合成技术一次性将同一树脂中
掺入多组官能团且在同一种树脂中实现软、硬段的高度分离
都极其困难,不同结构、不同属性的基料通过物理混合的方法
要简单得多,但是物理混合往往出现相容性问题,这是在塑料
涂料的配方设计过程中需高度关注的。
2环保型塑料涂料
2·1粉末涂料
一般来说,粉末涂料由于采用静电涂装,且需高温烘烤交
联成膜,所以在通常情况下塑料并不适合采用粉末涂料涂覆。
然而由于粉末涂料高交联特征,在耐介质等许多方面具有特
定的优势,所以近年来,在如冰箱、空调、小家电等众多领域,
粉末涂料成了新宠。为了实现静电涂装,一般在塑料中注入
导电纤维,比较常见的如尼龙、聚丙烯、玻璃纤维增强塑料等,
涂料品种主要涉及氨基丙烯酸、氨基聚酯等。
2·2水性涂料
在玩具领域,出于健康、安全方面的考虑,水性化是大势
所趋。Patil等[9]利用亲水性淀粉、水性环氧树脂、蜡乳液、三
聚氰胺-甲醛树脂及氟化表面活性剂等混匀涂覆于聚乙烯膜
表面, 80℃加热24 h后,由于热交联的缘故,涂膜强度、耐水
性及附着力均显著提升。Park等[10]通过氯化聚丙烯与丙烯
酰胺在引发剂作用下接枝共聚,得到的共聚物在聚丙烯表面
具有很好的附着力。利用VeoVa 10 (叔碳酸乙烯酯)与丙烯
酸酯共聚,内、外乳化并存,亲水性的二丙二醇丁醚作成膜助
剂,所得涂料涂覆于聚丙烯板上,涂膜附着力、耐水性均十分
优异[11]。利用磷酸酯与丙烯酸酯反应,用碱中和的方法得到
的聚合物配制铝粉漆,不仅铝粉漆分散、贮存稳定性好,而且
对塑料底材的润湿性好[12-13]。
在研究过程中发现,利用二双键或三双键的丙烯酸酯与
其他柔性丙烯酸单体进行乳液共聚,得到弹性的丙烯酸共聚
物,不仅强度与普通乳液对比明显增强,而且耐水性十分突
出,甚至在PC表面涂覆干燥后在去离子水中煮沸2 h仍不起
泡,而一般的溶剂型聚丙烯酸酯均难达到这种要求。笔者认
为,这些亲水型聚合物表面均含有一定量的亲水性官能团,水
分子可以借助于这些亲水性官能团,十分容易地在膜两边自
由进出,而高聚物本身与塑料底材之间的作用远大于高聚物
与水及塑料底材与水之间的作用,所以即使在煮沸状态下,水
分子对高聚物与塑料底材之间的破坏作用仍比较缓慢,以致
耐水煮时间较长。而一般溶剂型树脂多有一定的耐水性,但
涂层中的缝隙仍能让水分子缓慢进出,随着水温的升高,水分
子运动的动能加大,水分子通过涂膜向底材表面扩散加快,但
在加热状态下水分子向涂膜外表面扩散时,由于缺乏亲水性
官能团的水合化转移,水分子不断向涂膜冲撞,致使涂膜易于
被冲撞而剥落形成气泡。当然水性高分子涂膜的耐水性也仅
局限于不被锈蚀的非金属塑料或玻璃表面,而金属材料由于
易被氧化产生锈蚀而引起涂层疏松导致起泡。
目前,见诸于报导的用于改性水性聚合物成膜后耐水性
的研究主要集中在对聚合物进行疏水性改性(降低表面张
力)、聚合物内交联、立体结构(如二丙烯酸酯与多丙烯酸酯)、
聚合物成膜后自交联(有机硅、酰胺等改性)等[14-15]。为了改
善涂膜成膜后的耐溶剂性,在树脂结构中引入耐溶剂的官能
团如腈基(—CN)等,或采用交联单体。Kosugi和陈伟林
等[16-17]利用苯乙烯与丙烯腈、丙烯酸酯共聚,涂膜的耐水、耐
酸性均得到提高。而王玉香等[18]则利用水分散型的多异氰
酸酯与水性羟基丙烯酸树脂外交联用于ABS及PC、PVC等塑
料的涂装,涂膜的力学性能、耐水性、耐化学性十分理想。Zie-
gler等[19]则在水性双组分体系中引入亲水性的助溶剂辅助成
膜,由于树脂本身的水溶性相对下降,树脂在硬度等方面调节
的空间非常大,以致得到的涂膜综合性能优异,可适应各种塑
料底材涂装要求。
目前水性塑料用涂料的研究十分活跃,但真正进入工业
化生产的规模尚很小,笔者只在汽车、玩具、家电等少数领域
发现有使用水性塑料涂料的情况,而且品种主要集中在聚氨
酯水分散体、丙烯酸乳液与水性双组分丙烯酸酯涂料,究其原
因在于涂料水性化后涂膜综合性能与溶剂型涂料相比尚存在
一定的差距,然而无论从环境方面考虑,还是从节能、节约成
本角度出发,水性体系是关注的重点,随着新的合成技术、新
原材料的拓展,水性塑料涂料的发展空间会相应增大。
2. 3光固化涂料
相比于粉末涂料和水性化塑料涂料,光固化涂料在塑料
涂装领域的发展显得异常迅捷。目前在摩托车、电动车与家
电等领域,光固化塑料涂料已得到了广泛的推广,相应地推动
了光固化涂料技术本身的进步,包括从单体到助剂与合成技
术的进步。
Hamada等[20]利用甲基丙烯酸甲酯的均聚物与氨基丙烯
酸酯、甲基丙烯酸氧基酯等在光敏剂的引发作用下,得到在
ABS表面涂覆的快干涂层。Yaji等[21]采用含三环癸烷结构的
光敏剂引发聚丙烯酸酯配制丙烯酸涂料,涂覆在聚苯乙烯底
材上,涂层的透光性与表面流平性均非常突出。在聚碳酸酯
表面,采用热与光同时激发固化的双重固化模式,涂膜耐紫外
光性能得到显著改善[22]。而降冰片烯烃聚合物薄膜表面采
用UV固化的聚氨酯改性的氨基丙烯酸酯,在膜中引入二氧化
硅不会影响涂层的透明性,且涂层的耐划伤性优异[23]。在树
脂中引入弹性链段可提高涂膜的附着力与耐冲击性[24];分子
链段中引入含氟的硅氧烷与A-174(γ-甲基丙烯酰氧基丙
基三甲氧基硅烷)及胶体二氧化硅,涂膜的透明性、流平性、防
污性、耐磨性均因交联和表面张力的降低而得到明显改善[25]。
UV固化涂料目前在聚碳酸酯、ABS、聚苯乙烯、聚丙烯等
塑料表面应用较为普遍,但仍存在一些问题:
(1)涂料与底漆(本色漆或金属漆)之间的附着力问题;
(2)罩光漆涂膜放置一段时间易出现雾影,耐湿热性能较差;
(3)与聚氨酯等体系相比,涂层耐水性往往显得不够; (4)涂料
目前主要用于清漆,通过颜料着色对光固化过程影响较大。
光固化残留的自由基影响涂膜的耐黄变性等。
3功能化涂料
塑料涂料除对塑料制品具有保护功能外,近年来在装饰
及功能化领域取得了一系列进展。利用硅氧烷与环氧-硅酸
酯共聚物与叔胺作用,得到的涂层在聚酯切片上不仅附着力
好,而且耐磨性突出[26-28]。同样对于聚酯片,用丙烯酸-β-
羟乙酯酯化二苯基四羧酸二酐,再与甲基丙烯酸缩水甘油酯
和邻苯基苯基缩水甘油醚反应,涂膜不仅折光指数高,而且耐
磨性好[29]。而利用增滑剂如石蜡或润滑剂,对于含氨基甲酸
酯改性聚亚烷基二醇聚(甲基)丙烯酸酯与氨基甲酯改性的聚
(甲基)丙烯酸酯混合物在光敏剂存在时,利用UV光照射,得
到的涂膜不仅耐划伤、耐候,而且防雾性能好[30]。同样,为了
改善防雾性能,Konno等[31]则利用外乳化法,得到的聚丙烯酸
酯与胶体二氧化硅、具有阴离子特征的碳酸酯-聚氨酯复合,
得到的涂膜对聚烯烃不仅润湿性好,而且具有优良的防雾性。
Brand等[32]发现用低氧透过性的聚硅氧烷涂覆在PET膜上,
氧透过值只有14 mL/(dm2bar);Yamazaki等[33]发现部分锌中
和的聚丙烯酸具有对氧的阻隔性。而Miyasaka[34]则发现聚乙
烯醇和浮型二氧化硅混合物制成的涂膜(涂覆于双轴取向的
聚丙烯膜)水蒸气与氧的渗透性极低,在20℃, 60%相对湿度
及40℃, 90%相对湿度下,分别只有1·5 mL/(m2·24 h·atm)
和4·9 mL/(m2·24 h·atm)(1 atm=101·325 Pa)。
利用橡胶的减震性,将橡胶与聚硅氧烷、可固化聚氨酯等
复合,成膜后由于物件与涂覆底材接触或移动产生的噪音,在
一段时间内保持起始静态摩擦系数,具有减震性[35]。热固性
或紫外光固化的树脂与含氟聚合物通过热固化或紫外光引发
聚合,在聚酯膜上涂覆,具有防反射功能[36]。硅氧烷聚合物
等具有低反射指数的涂料,同样具有防反射功能[37]。研究发
现,氢氧化铝粒子与低玻璃化转变温度的树脂(Tg: -50~
50℃)混合涂覆在聚酯膜表面,具有热辐射功能。
4特种塑料涂料
塑料涂料除了涂料与塑料之间的作用外,往往还可能存
在与其他介质之间的作用,真空镀膜涂料即是如此,它除了与
塑料接触外,还与金属镀膜层发生作用,这些涂料在金属膜与
塑料底材之间起到桥梁作用。目前真空镀膜底漆主要涉及丙
烯酸、氨酯油及改性聚丁二烯等,主要涉及灯具、塑料镀铬装
饰,有时具有辅助塑料导电、导热之功能。而面漆则主要为丙
烯酸、聚氨酯及聚乙烯醇缩丁醛。孙永泰[38]利用HDI与水作
用形成的多羟基型聚氨酯涂覆在塑料镀铬件的外表面,涂膜
丰满、坚韧,具有良好的耐磨性、耐冲击、耐化学品与耐湿热
性。而氨基丙烯酸涂料、叔碳酸缩水甘油酯改性丙烯酸涂料、
含氟丙烯酸酯聚合物等应用于真空镀膜涂料得到的涂膜往往
具有高硬度、丰满、耐污染等特征[39-41]。近年来,紫外光固化
涂料在真空镀膜领域中取得了较好的应用效果,为了降低涂
膜表面的缺陷,改善涂膜的性能,通常在涂料中加入少量惰性
溶剂。与此同时,热固化与光固化同时存在于真空镀膜涂料
中,涂膜的交联密度、硬度与耐磨性均能得到改善,而且涂膜
外观更好。环氧改性对塑料镀银附着力的提升十分有效,Ozu
等利用四甲氧基硅烷部分缩合物(Me Silicate51)与缩水甘油
(EpiolOH)酯交换反应,再与2-羟乙基乙烯二胺-异佛尔酮
二胺-异佛尔酮二异氰酸酯-聚碳酸酯二醇(PlaccelCD220)
共聚物反应,得到的底漆喷涂于ABS板上,在80℃干燥
10 min,对ABS和镀银镜面附着力高[42]。
5塑料涂料研究存在的问题
到目前为止,塑料涂料研究大多数停留在配方性能测试
阶段,由于塑料对溶剂的敏感性不同,对于溶剂型涂料,涂料
中的溶剂或多或少对塑料底材存在侵蚀性,塑料与涂料界面
之间容易发生互相渗透、扩散,导致物理与化学作用共存,加
上多数塑料本身的使用寿命较短,塑料涂料的时效性和涂料
对塑料本身应用改变的影响程度常被忽视,而这些对塑料制
品的应用往往十分重要。一些高结晶度的工程塑料,如聚甲
醛、聚砜等在没有对塑料进行表面处理时,直接涂覆涂料一般
比较困难,有必要寻找到与这些材料之间亲和性较好的化合
物,开发出能直接在塑料表面涂装的涂料,减少表面处理带来
的环境与成本问题。
5. 急 急 急求一篇3000字左右有关“聚碳酸酯”的英文论文
Promptness accompanying semiconctor and the photoelectricity technology develops , the solid state image sensor also arises at the historic moment , the proctive technology technology can't develop swift and violent. The solid state image sensor is compared with average image sensor , have volume lacking fidelity for a short time, for a short time, sensitiveness is high , resist to vibrate , is able to bear moistness , a lot of merit of cost low grade, therefore can broad apply to instry measurement, is that meticulous of our country processes , development of robot technology and instrial automation field gets the significant effect under the control of, especially waiting for a field in pattern recognition, and with the branch who seeps through each that the instry and agriculture in our country proces broadly. At the same time, computer soft hardware technology never-ending changes and improvements, application that can give a solid state image a sensor also brings about vast vistas. The principle the main body of a book is complied with analysing the solid state image sensor starts off , emphasizes analysis and investigation and discussion being in progress to it in test control and the pattern recognition field.
能给你这个了
6. 异山梨醇型聚碳酸酯的合成及其改性研究---万方上的论文 下载不了 有哪位大神可以下载的 QQ号:1191832667
知网上的可以帮忙下载
7. 请问有没有好心人有龙源期刊网的号,帮我下个论文嘛,只要三毛钱.麻烦上传到知道可以吗
【摘 要】本文阐述了采用玻璃纤维蜂窝复合材料替代光伏组件的玻璃底衬基板,并利用特殊工艺对光伏组件进行封装,既可满足光伏组件底衬基板的性能要求,又可减轻光伏组件的重量,必将成为光伏组件层压封装的首选材料。
【关键词】玻璃纤维;蜂窝;光伏组件;应用;分析【中图分类号】TQ171.77
0引言
在光伏行业生产制造技术发展过程中,若干年来一直延续着利用玻璃作为透光材料和支撑保护电池片的底衬基板材料,采用EVA\PVB等胶膜热层压贴合电池片和保护背板的传统生产工艺,利用玻璃作为底衬基板的太阳能光伏组件,由于玻璃相对比较平整并且有一定强度,在层压封装完成后能够保证组件外观平整程度,保证电池片的发电效率和在不同自然条件下长期使用的寿命要求,但是对于限制太阳能光伏组件重量的使用场所,比如房屋屋顶、家庭阳台等使用玻璃材料的重量会大幅度超出使用要求,因为在采用光伏专用超白玻璃作为底衬基板加工成的太阳能光伏组件中,这些玻璃材料的比重为2.2-2.7之间,玻璃材料的重量占光伏组件成品材料总重量的80%左右,虽然单独降低玻璃的厚度在一定程度上可以降低组件一些重量,但是过薄的玻璃会对于光伏组件的使用强度大打折扣,同时依然满足不了航空航天、军事装备等特殊领域对于太阳能光伏组件提出的效率高、重量轻、耐冲击、寿命长等要求,所以必须选择一种强度高、重量轻、耐腐蚀、易加工、节能环保的材料,代替玻璃作为光伏组件的底衬基板材料,减轻太阳能光伏组件的单位体积重量,以适应光伏组件在特殊条件下。
1现状分析
在人类的发展过程中,我们大量使用各种板材,如木板、金属板、塑料板、水泥板等,它们被广泛用于各行各业,如航空航天、建筑、家具制造、运输、包装等。为了自然资源消耗,大自然给与人类灵感,使我们从蜂巢中得到启迪,创造性地发展了蜂窝复合材料,它是人类至今为止所知的最节省材料、具有最大的强度重量比的一种结构性材料。与实心材料相比,蜂窝复合材料使用的有效材料仅为被替代材料的1%-5%,在诸多的应用中,蜂窝复合板材几乎可以完全替代各类实心板材的使用,降低原材料的使用量,达到高效、节能的目的。蜂窝复合材料的研制和生产已经形成了一个高科技的产业,并由此推动了许多高新科技的发展,转而带动蜂窝复合材料在民用工业的广泛使用。
蜂窝结构板材具有许多优越的性能:从力学角度分析,封闭的六角等边蜂窝结构相比其它结构,能以最少的材料获得最大的受力,而蜂窝结构板受垂直于板面的载荷时,它的弯曲刚度与同材料、同厚度的实心板相差无几,甚至更高,但其重量却轻70%-90%,而且不易变形,不易开裂和断裂,具有减震、隔音、隔热和极强的耐候性等优点。正是基于蜂窝复合板材轻质高强的优点,它才一直成为航空、航天高科技工业所广泛使用的轻质材料。
2方案设计
玻璃纤维蜂窝复合材料是一种上下两层环氧树脂玻璃纤维薄板,纤维板采用天然木浆纸或者回收纸浆作为原材料,中间夹浸胶的蜂窝状纸芯材,通过浸环氧树脂胶液后高温度固化成型工艺即成为强度高、重量轻,适合太阳能光伏电池层压封装使用的玻纤蜂窝复合材料底衬基板,生产过程中无污染、无排放,充分利用再生纸加工,符合环保节能要求。它的有效体积仅为光伏玻璃材料的1%-5%,重量是光伏玻璃材料的6%,由于蜂窝芯的特殊六角型结构,可以节省大量的材料,正是基于蜂窝复合材料轻质高强的优点,可以制造成为平板材料也可以根据使用的要求利用模具制造成为各种复杂的曲面,将会成为太阳能光伏行业电池片封装载体的首选材料,是一种用料省、耗能小、可回收的极具潜力的轻质材料,降低了原材料的使用量,达到高效、节能的目的。
采用玻纤蜂窝材料封装的光伏组件,替代了传统玻璃封装组件工艺中的玻璃和保护背板的使用,满足了对于组件产品的重量限制要求,降低了整个光伏组件的重量和成本。封装完毕的光伏组件强度高,表面平整,不易变形;耐老化,抗冲击,可以和多种表面透光材料热真空层压结合使用,适合安装在有组件边框组件上和无边框组件上使用。根据光伏组件的外观要求还可以在环氧树脂玻璃纤维板生产过程中将多种颜料着色作为底色,产品可选择种类多,满足不同的光伏组件对底衬材料颜色要求。
3技术工艺
制作玻璃纤维复合材料的具体工艺如下;取厚约0.1-0.2毫米的木浆纸或者回收纸加工高为3毫米,边长为6毫米六角型的蜂窝状芯材,长宽面积和所需要封装光伏电池组件的要求一致,将蜂窝芯材用环氧树脂胶液浸泡至饱和浓度后,通过离心机离心脱除多余胶液,放入将预先成型的厚度为0.3毫米长宽尺寸同上的环氧树脂玻璃纤维薄板之间,通过加压固定加热至摄氏120度六小时后固化成型,经打磨修边整理后就可以利用该材料作为光伏组件的层压封装底衬基板。光伏组件层压封装前在该基板表面铺设一层PVB,放置焊接好组串的电池片,再铺设一层PVB胶膜,并铺设超薄的透光材料(聚碳酸酯)等作为电池片表面的保护层,进入常规的组件层压机真空层压成为供特种条件下使用的超轻型光伏组件。
4 结束语
光伏组件重量问题日益突出,依靠降低玻璃厚度虽可解决,但是过薄的玻璃会对于光伏组件的使用强度大打折扣,玻璃纤维蜂窝复合材料必将成为将来的发展趋势,满足特殊领域对光伏组件的提出的效率高、重量轻、耐冲击、寿命长等要求。
8. 求一篇关于一类或一种功能高分子材料的综合性论述文章 字数在5000字左右
生物医用高分子材料
摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。
关键词:功能高分子材料,生物医用高分子材料。
功能高分子材料
功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%
所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。
功能高分子材料按照功能特性通常可分成以下几类:
(1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。 功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。
随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。
一般归纳起来医用高分子材料应符合下列要求:
1、化学稳定性好,在人体接触部分不能发生影响而变化;
2、组织相容性好,在人体内不发生炎症和排异反应;
3、不会致癌变;
4、耐生物老化,在人体内材料长期性能无变化;
5、耐煮沸,灭菌、药液消毒等处理方法;
6、材料来源广、易于加工成型。
经多年研究,能较好符合上述要求的高分子化合物主要有两大类,一类是有机硅化合物,第二类是有机氟化物,最主要的两种产品是硅橡胶和聚四氟乙烯,例如美国GE公司开发了一批主要是有机硅方面的用于医学领域的功能高分子化合物。
生物医用高分子材料的现状和发展趋势
生物医用高分子材料是以医用为目的,用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的高分子材料,即biomedical polymeric materials ,生物医用高分子材料是在高分子材料科学不断向医学和生命科学渗透,高分子材料广泛应用于医学领域的过程中,逐渐发展起来的一类生物材料,它已形成一门介于现代医学和高分子科学之间的边缘科学。在功能高分子材料领域, 生物医用高分子材料可谓异军突起, 目前已成为发展最快的一个重要分支。
生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937 年,其特点是所用高分子材料都是已有的现成材料, 如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953 年, 其标志是医用级有机硅橡胶的出现, 随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚- 氨) 酯心血管材料, 从此进入了以分子工程研究为基础的发展时期。该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计, 有目的地开发所需要的高分子材料。目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。其特点是这种材料一般由活体组织和人工材料有机结合而成, 在分子设计上以促进周围组织细胞生长为预想功能, 其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度在国外,生物医用高分子材料研究已有50多年的历史,早在1947 年美国已发表了展望性论文。 随后,美国、日本、欧洲等工业发达国家不断有文章报道,有些并已在临床上得到应用。 我国研究历史较短,上世纪70年代开始进行人工器官的研制,并有部分器官进入临床应用。1980 年成立了中国生物医疗工程学会,并于1982 年又成立了中国医学工程学会人工脏器及生物材料专业委员会,使得生物医学器材获得进一步发展. 生物医用高分子材料作为一门边缘科学,融合了高分子化学和物理、高分子材料工艺学、药理学、病理学、解剖学和临床医学等方面的知识,还涉及许多工程学问题。生物医用高分子材料的发展,对于战胜危害人类的疾病,保障人民身体健康,探索人类生命奥秘具有重大意义。
1 生物医用高分子材料的基本要求及生物相容性
对于生物医用高分子材料来说,除了要有医疗功能外,还必须强调安全性,即不仅要治病,而且对人体健康无害。 当然,对生物医用高分子材料的要求也不是一律不变的,可因其使用环境或功能的不同而异,如外用医疗材料与肌体接触时间短,要求可稍低,而与血液直接接触,或体内使用的材料则要求较高。
2 生物医用高分子材料的种类及发展
生物医用高分子材料按性质可分为非降解和可生物降解两大类。非生物降解的生物医用高分子包括:聚乙烯、聚丙烯、聚丙烯酸酯、芳香聚酯、聚硅氧烷、聚甲醛等,其在生理环境中能长期保持稳定,不发生降解、交联或物理磨损等,并具有良好的力学性能。可生物降解的生物医用高分子材料则包括胶原、脂肪族聚酯、聚氨基酸、聚己内酯等,这些材料能在生理环境中发生结构性破坏,且降解产物能通过正常的新陈代谢被基体吸收或排出体外。非降解和可生物降解生物医用高分子材料在生物医学领域各具有自己独特的发展地位,然而,随着生物医学和材料科学的发展,人们对生物医用高分子材料提出了更高的要求,可生物降解生物医用高分子材料越来越得到人们的亲睐。因此,在这里主要讨论可生物降解医用高分子材料的种类。
根据来源来划分,可生物降解医用高分子材料可分为天然可生物降解和合成可生物降解两大类。
3 生物医用高分子材料的应用及展望
生物技术将是21世纪最有前途的技术, 生物医用高分子材料将在其中扮演重要角色, 其性能将不断提高, 应用领域也将进一步拓宽。生物医用高分子材料应用主要有以下几个方面:
(1)与血液接触的高分子材料。与血液接触的高分子材料是指用来制造人工血管、人工心脏血囊、人工心瓣膜、人工肺等的生物医用材料, 要求这种材料要有良好的抗凝血性、抗细菌粘附性, 即在材料表面不产生血栓、不引起血小板变形, 不发生以生物材料为中心的感染。此外, 还要求它具有与人体血管相似的弹性和延展性以及良好的耐疲劳性等。
(2)组织工程用高分子材料。组织工程学是近十年来新兴的一门交叉学科,它是应用工程学和生命科学的原理和方法来了解正常和病理的哺乳类组织的结构- 功能关系, 以及研制生物代用品以恢复、维持或改善其功能的一门科学。细胞大规模培养技术的日臻成熟和生物相容性材料的开发与研究, 使得创造由活细胞和生物相容性材料组成的人造生物组织或器官成为可能。
(3)药用高分子材料。与低分子药物相比,药用高分子具有低毒、高效、缓释、长效、可定点释放等优点。根据药用高分子结构与制剂的形式, 药用高分子可分为三类: a. 具有药理活性的高分子药物,它们本身具有药理作用,断链后即失去药性, 是真正意义上的高分子药物。b.低分子药物的高分子化。低分子药物在体内新陈代谢速度快, 半衰期短, 体内浓度降低快, 从而影响疗效, 故需大剂量频繁进药, 而过高的药剂浓度又会加重副作用, 此外, 低分子药物也缺乏进入人体部位的选择性。将低分子药物与高分子结合的方法有吸附、共聚、嵌段和接枝等。C.药用高分子微胶囊,即将细微的药粒用高分子膜包覆起来形成微小的胶囊,其作用有:延缓、控制释放药物, 提高疗效; 掩蔽药物的毒性、刺激性和苦味等不良性质, 减小对人体的刺激; 使药物与空气隔离, 防止药物在存放过程中的氧化、吸潮等不良反应, 增加贮存的稳定性。
(4)医药包装用高分子材料。用于药物包装的高分子材料正逐年增加,包装药物的高分子材料大体上可分为软、硬两种类型。硬型材料如聚酯、聚苯乙烯、聚碳酸酯等, 由于其强度高、透明性好、尺寸稳定、气密性好,常用来代替玻璃容器和金属容器, 制造饮片和胶囊等固体制剂的包装。新型聚酯聚萘二甲酸乙二醇酯除具有优异的力学性能及阻隔性能外, 还有较强的耐紫外线性, 可用于口服液、糖浆等的热封装。软型材料如聚乙烯、聚丙烯、聚偏氯乙烯及乙烯- 醋酸乙烯共聚物等, 常加工成复合薄膜, 主要用来包装固体冲剂、片剂等药物。而半硬质聚氯乙烯片材则被用作片剂、胶囊的铝塑泡罩包装的泡罩材料。至于药膏、洗剂、酊剂等外用药液的包装, 则用耐腐蚀性极强且综合性能优良的聚四氟乙烯来担任。
(5)隐形眼镜是最常见的眼科用高分子材料制品。对这类材料的基本要求是: ①具有优良的光学性质, 折光率与角膜相接近;②良好的润湿性和透氧性; ③生物惰性, 即耐降解且不与接触面发生化学反应; ④有一定的力学强度, 易于精加工及抗污渍沉淀等。常用的隐形眼镜材料有聚甲基丙烯酸β-羟乙酯, 聚甲基丙烯酸β- 羟乙酯- N - 乙烯吡咯烷酮, 聚甲基丙烯酸β- 羟乙酯- 甲基丙烯酸戊酯, 聚甲基丙烯酸甘油酯- N - 乙烯吡咯烷酮等。浙江工业大学的邬润德等研究的聚钛硅氧烷化合物, 由于在聚合体系中加入了钛烷氧化物交联剂,使材料的致密性增加, 减少了固化收缩, 制备了一种优良的隐形眼镜材料。此外, 发生病变的角膜和晶状体也可用人工角膜和人工晶状体替代。人工角膜可用硅橡胶、聚甲基丙烯酸酯类或聚酯等薄膜制备。人工晶状体的主体材料可用聚甲基丙烯酸酯类, 其起固定作用的附加爪状细枝可用甲基丙烯酸甲酯和甲基丙烯酸丁酯的共聚物或甲基丙烯酸环己酯和甲基丙烯酸丁酯的共聚物等。
(6)医用粘合剂与缝合线。生物医用粘合剂是指将组织粘合起来的组织粘合剂, 它们除了应具备一般软组织植入物所应有的条件外, 还应满足下列要求: ①在活体能承受的条件下固化, 使组织粘合; ②能迅速聚合而没有过量的热和毒副产物产生; ③在创伤愈合时粘合剂可被吸收而不干扰正常的愈合过程。常用的粘合剂有α- 氰基丙烯酸烷基酯类, 甲基丙烯酸甲酯- 苯乙烯共聚物及亚甲基丙二酸甲基烯丙基酯等。手术用缝合线可分为非吸收型和可吸收型两大类。非吸收类包括天然纤维(如蚕丝、木棉、麻及马毛等) 和合成纤维(如PET、PA、PP、PE 单丝、PTFE 及PU 等) 。可吸收类包括天然高分子材料(如羊肠线、骨胶原、纤维蛋白等) 和合成高分子材料(如聚乙烯醇、聚羟乙基丁酸酯、聚乳酸、聚氨基酸及聚羟基乙酸等) 。其中, 由聚乳酸和聚羟基乙酸或两者的共聚物制成的缝合线因性能优越而倍受关注。这种缝合线强度可靠, 对创口缝合能力强, 又可生物降解而被肌体吸收, 是一种理想的医用缝合线。
(7)医疗器件用高分子材料。高分子材料制的医疗器件有一次性医疗用品 (注射器、输液器、检查器具、护理用具、麻醉及手术室用具等) 、血袋、尿袋及矫形材料等。一次性医疗用品多采用常见高分子材料如聚丙烯和聚4-甲基- 1 - 戊烯制造。血袋一般由软PVC 或LDPE 制成。由PU 制的绷带固化速度快, 质轻层薄, 不易使皮肤发炎, 可取代传统的固定材料———石膏用于骨折固定。硅橡胶、聚酯、聚四氟乙烯、聚酸酐及聚乙烯醇等都是性能良好的矫形材料,已广泛用于假肢制造及整形外科等领域。
医用高分子材料的发展方向主要包括:
(1)可生物降解医用高分子材料因其具有良好的生物降解性和生物相容性而受到高度重视, 无论是作为缓释药物还是作为促进组织生长的骨架材料, 都将得到巨大的发展。
(2)1906 年En rililich 首次提出药物选择性地分布于病变部位以降低其对正常组织的毒副作用, 使病变组织的药物浓度增大, 从而提高药物利用率这一靶向给药的概念。此后一个世纪以来, 靶向药物的载体材料一直吸引了医药工作者的兴趣。其中高分子纳米粒子以其特有的优点是近年来国内外一个极为重要的研究热点。
(3)任何一种材料都是通过其表面与环境介质相接触的, 因此材料的开发与应用必然涉及其表面问题的研究。一般高分子材料的表面对外界响应性较弱, 但有些高分子表面的结构形态会因外界条件(如pH、温度、应力、光及电场等) 的改变在极短时间内发生相应的变化, 从而造成表面性质的改变, 此乃智能高分子表面。因此设计这类智能表面将是生物医用高分子材料发展的一个重要方面。
(4)随着科学的发展,由高分子材料制成的人工脏器正在从体外使用型向内植型发展,为满足医用功能性、生物相容性的要求,把酶和生物细胞固定在合成高分子材料上,从而制成各种脏器,将使生物医用高分子材料发展前景越来越广阔。
(5)通常,在组织工程的应用中,高分子材料支架要负载上生长因子,以促进组织在生物体内的再生,另一方面,把特殊的粘附因子,如粘连蛋白结合到支架上,可使聚合物表面能够促进对某种细胞的粘附,而排斥其它种类的细胞,即支架对细胞进行有选择的粘附。为了使生长因子和粘附因子能够结合到可降解高分子材料上,就需要对材料进行表面改性,而有时表面改性很困难, 因此,可利用与天然聚合物杂化的方法来达到上述目的, 同时由于这些材料有良好的机械性能,又可以弥补天然聚合物强度不高、稳定性差的缺点。可见,生物杂化材料在这方面的表现是相当突出的, 必将成为医用生物高分子材料发展的一个主要趋势。
给我分吧,我找得苦。
9. 学术论文要怎样写是关于化学聚碳酸酯的
告诉你一个学习流程,1. 先去查CA,花一个月收集和整理资料。2.确定课题方向,列出大纲。3. 确定实验计划,论文撰写。4.完善论文,补充实验数据。