稀疏主题模型
① 主题模型的主题数定位7最合适吗
python lda 主题模型 需要使用什么包
数据结构是程序构成的重要部分,链表、树、图这些在用C 编程时需要仔细表达的问题在Python 中简单了很多。在Python 中,最基本的数据结构就是数组、序列和哈希表,用它们想要表达各种常见的数据结构是非常容易的。没了定义指针、分配内存的任务,编程变得有趣了。CORBA 是一种高级的体系结构,它是语言无关无关的。C++、Java 等语言都有CORBA 绑定,但与它们相比,Python 的 CORBA 绑定却容易很多,因为在程序员看来,一个 CORBA 的类和 Python 的类用起来以及实现起来并没有什么差别。
② 对比传统K-Means等聚类算法,LDA主题模型在文本聚类上有何优缺点
应该拟合吧虽EM没真拟合说类别增每数据点更高概率配些类别
③ 什么是LDA主题模型
在机器学习领域,LDA是两个常用模型的简称:Linear Discriminant Analysis 和 Latent Dirichlet Allocation。本文的LDA仅指代Latent Dirichlet Allocation. LDA 在主题模型中占有非常重要的地位,常用来文本分类。
LDA由Blei, David M.、Ng, Andrew Y.、Jordan于2003年提出,用来推测文档的主题分布。它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一些文档抽取出它们的主题分布后,便可以根据主题分布进行主题聚类或文本分类。
LDA 模型涉及很多数学知识,这也许是LDA晦涩难懂的主要原因。本小节主要介绍LDA中涉及的数学知识。数学功底比较好的同学可以直接跳过本小节。
LDA涉及到的先验知识有:二项分布、Gamma函数、Beta分布、多项分布、Dirichlet分布、马尔科夫链、MCMC、Gibs Sampling、EM算法等。限于篇幅,本文仅会有的放矢的介绍部分概念,不会每个概念都仔细介绍,亦不会涉及到每个概念的数学公式推导。如果每个概念都详细介绍,估计都可以写一本百页的书了。如果你对LDA的理解能达到如数家珍、信手拈来的程度,那么恭喜你已经掌握了从事机器学习方面的扎实数学基础。想进一步了解底层的数学公式推导过程,可以参考《数学全书》等资料。
④ LDA主题模型,有人用过JGibbLDA这个lda实现么
有很多啊,python里面都有标准的库了,其实有了JGibbsLDA也就够了,想要其他语言的版本,自己改写一个吧
⑤ 主题模型到底还有没有用,该怎么用
据我所知大部分关于文档的实际应用场景下,用topic modeling抽topic,然后添加到基于关键词的系统上都只能看到微弱的效果提升。注意是添加到已有的关键词系统...
⑥ DOTA2主题模型玩具
威术玩具里有很多,DOTA2水杯,人物模型,肉山模型都有。