科学而不
『壹』 什么是科学,科学只是发现而不是发明
科学就是探索未知的过程,所以说科学主要是发现自然的本原。但发现与发明之间没有鸿沟,比如科学家在加速器中制造出了新的元素,很难说这是发现还是发明。
『贰』 为什么很多科学家都选择科学而不相信一定的迷信
就是因为迷信,老人们相信迷信,所以他们这么说的,而且迷信也一传十,十传百。所以有很多人相信。
所谓的迷信可以被科学地解释,所以,科学家不信迷信。
老人们大概只是学习了中国的古文化,而且对科学没有认识
,所以在没有科学素养的情况下,只好相信迷信
而且,你见过“龙”吗?
有时候云的样子很象人们心中的“龙”,就被没有科学素养的人想象成看到“龙”了
没见过的东西,不要轻易地相信别人
『叁』 为什么科学诞生在西方而不是中国
中国古代科技长期领先世界,为什麽近代以后远远落后于西方,这一现象被称为“李约瑟难题”。
中外学者纷纷对这一问题提出自己的看法,总结一下大体有一下七种观点:
数学缺乏论。德国哲学家及数学家莱布尼兹在1697年的《中国近事》一书中说:“看来中国人缺乏心智的伟大之光,对证明的艺术一无所知,而满足于靠经验而获得的数学,如同我们的工匠所掌握的那种数学。”至于中国在科学方面没有达到极高的造诣,“简单的原因是,他们缺乏欧洲人的慧眼之一,即数学。” [1]爱因斯坦也曾说过:“西方科学的发展是以两个伟大的成就为基础,那就是:希腊哲学家发明形式逻辑体系(在欧几里德几何学中),以及通过系统的实验发现有可能找出因果关系(在文艺复兴时期)。在我看来,中国的贤哲没有走上这两步,……”[2]李约瑟同样认为“当自然科学与数学的融合成为普遍现象之后,自然科学才能成为全人类的共同财富。”但是他研究发现:“中国数学思想基本是代数学思维模式而不是几何学式样的”而近代科学的发端恰赖于几何学,如牛顿“在写《数学原理》的时候他并没有用微积分,他证明每一个定理时用的都是几何的方法,跟欧几里德书里很相像。”
文化制约说。美籍学者成中英认为:“一门新的物理科学必须开始于一个新的数学创造,完成于一个新的逻辑的诞生。”“我们甚至可主张,现代科学及因果律模型,都是西方形而上学与西方文明之主流的结晶” “犹太教及基督教传统的超绝神学,与德谟克利特原子论的机械式模型相辅相成,共同造就了作为现代科学的基础的因果律标准模型。……若没有这些文化传统作为科学知性的基础,西方科学就不可能产生。”然而在中国,宗教意识较为淡薄。取而代之的是“哲学在中国文化中所占的地位,历来可以与宗教与其他文化中的地位相比。在中国,哲学与知识分子人人有关。在旧时,一个人只要受教育,就是用哲学发蒙”。而中国哲学的特点是“在表面上,中国哲学所注重的是社会,不是宇宙;是人伦日用,不是地狱天堂;是人的今生,不是人的来世”
语言决定论。在《风俗论》一书中,伏尔泰认为:“如果要问,中国既然不间断地致力于各种技艺和科学已有如此遥久的历史,为什么进步却微乎其微?这可能有两个原因:一是中国人对祖先流传下的东西有一种不可思议的崇敬心,认为一切古老的东西都尽善尽美;另一个原因在于他们的语言的性质——语言是一切知识的第一要素。” 伏尔泰所说的第一原因,属于文化因素范畴。第二原因,则点出了语言问题。
态度决定论。杨振宁认为,“以后整个清朝有些大学者如戴震、阮元等都继续发挥‘西学中源’说。由于他们的影响,使中国的学者在清朝三百年间没有真正吸取西方人的科技。……我认为,清朝的‘西学中源’说产生了非常恶劣的影响。”清朝时的中国已将汉唐时因强大自信心而展示出的对外来文化包容的大胸襟丧失殆尽。
墨家绝世说。在春秋战国时期的诸子百家中,墨家的学说在许多科学领域有相当大的贡献,如时空观如几何学如力学如原子论如光学等等。亡了墨家即除了科技的根基,因此有文献认为墨学终成绝世之学是近代科学没有在中国诞生的主要原因。
社会制度决定说。教育家竺可桢先生在新中国诞生前就指出:“归根起来讲,中国农村社会的机构和封建思想,使中国古代不能产生自然科学。”
地理位置决定论。英国哲学家休谟在其《论文集》中认为,没有什么能比若干邻近而独立的国家,通过贸易和政策联合在一起,更有利于提高教养和学问。中国恰恰在这一方面有很大的缺陷,从而使原来可能发展出更完善和更完备的教养和科学,在许多世纪的进程中,收获甚微。从外部来说,其原因在于没有更多的外贸对象。但从内部说,是由于中国处于一大位的状态之下,说一种语言,在一种法律统治下,赞成相同的生活方式;对权威的宣传和敬畏,造成了勇气的丧失。假如中国邻帮有一个独立的王国,它研究科学,它的学者能够揭露中国人在天文学中的错误,中国人也许可以从他们的昏昏欲睡中醒来,皇帝变得关注推动这门科学的进步……”
『肆』 这个世界为什么只能有科学,而不能存在魔法
科学是什么?
我不认为科学就是对的.
西方的文明叫做科学.
我们东方的文明就叫做玄学.
有鬼有神存在是肯定的.
不能说你没见过,就代表没有.
『伍』 党的建议科学代不是为了科学而科学,而必须以什么为价值追求
党的建议科学带不是为了科学而科学,而必须以维护人民的利益,为真正的价值追求正确的价值观,应该尊重客观规律,站在最广大人民的立场上。
『陆』 为什么要选择科学而不是玄学
很明显,人类要选择科学:
1)
科学的过程:实验(实践)发现现象--->根据既有的理论、模型、假说逻辑推导新理论、模型、假说--->实验验证新理论、模型、假说--->修改修正新理论、模型、假说--->再实验验证理论、模型、假说
玄学的过程:顿悟(启示)--->攻击其她理论、模型、假说--->再顿悟出后续解释--->攻击其她流派--->形成教条体系
2)
科学的实验:必须是可重复、可再次验证、可在不同的实验地点、被不同的实验观察者验证的现象,才可以作为实验的结论。
玄学的顿悟:是个体性的,不具有可复制性。别的个体只能单方面某个个体所说的顿悟内容,而不能自己验证。
3)
科学是可伪论的,强调可证伪性,只判断什么是错的。而不判定什么是对的。更不能自称是对的,就将其她全部判断为错的。
玄学是排他论的,强调“真理”性。自称是对的,将其她攻击为错的。
科学具有开放性、可重复性、客观性和中立性。
玄学具有封闭性、强迫性、教条性、极端性和暴力性。
『柒』 为什么多数人信科学而不信佛
佛教现在名不正,从小的教育是科学。
『捌』 为什么数学是思维科学而不是自然科学
其实这很明显是依赖于对数学和科学的定义。这个问题之所以有争议,以前是在于数学能否被证伪及数学能否被观察被操作的问题上。这个问题不是否认数学在科学中的重要性,而是对于数学和科学的属性的一个思考而已
贴一下wiki里数学和科学关系那一段吧,有兴趣可以了解一下
Mathematics as science
Carl Friedrich Gauss, himself known as the "prince of mathematicians", referred to mathematics as "the Queen of the Sciences".
Carl Friedrich Gauss referred to mathematics as "the Queen of the Sciences".[21] In the original Latin Regina Scientiarum, as well as in German Königin der Wissenschaften, the word corresponding to science means (field of) knowledge. Indeed, this is also the original meaning in English, and there is no doubt that mathematics is in this sense a science. The specialization restricting the meaning to natural science is of later date. If one considers science to be strictly about the physical world, then mathematics, or at least pure mathematics, is not a science. Albert Einstein has stated that "as far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality."[6]
Many philosophers believe that mathematics is not experimentally falsifiable, and thus not a science according to the definition of Karl Popper.[22] However, in the 1930s important work in mathematical logic showed that mathematics cannot be reced to logic, and Karl Popper concluded that "most mathematical theories are, like those of physics and biology, hypothetico-dective: pure mathematics therefore turns out to be much closer to the natural sciences whose hypotheses are conjectures, than it seemed even recently."[23] Other thinkers, notably Imre Lakatos, have applied a version of falsificationism to mathematics itself.
An alternative view is that certain scientific fields (such as theoretical physics) are mathematics with axioms that are intended to correspond to reality. In fact, the theoretical physicist, J. M. Ziman, proposed that science is public knowledge and thus includes mathematics.[24] In any case, mathematics shares much in common with many fields in the physical sciences, notably the exploration of the logical consequences of assumptions. Intuition and experimentation also play a role in the formulation of conjectures in both mathematics and the (other) sciences. Experimental mathematics continues to grow in importance within mathematics, and computation and simulation are playing an increasing role in both the sciences and mathematics, weakening the objection that mathematics does not use the scientific method. In his 2002 book A New Kind of Science, Stephen Wolfram argues that computational mathematics deserves to be explored empirically as a scientific field in its own right.
The opinions of mathematicians on this matter are varied. Many mathematicians feel that to call their area a science is to downplay the importance of its aesthetic side, and its history in the traditional seven liberal arts; others feel that to ignore its connection to the sciences is to turn a blind eye to the fact that the interface between mathematics and its applications in science and engineering has driven much development in mathematics. One way this difference of viewpoint plays out is in the philosophical debate as to whether mathematics is created (as in art) or discovered (as in science). It is common to see universities divided into sections that include a division of Science and Mathematics, indicating that the fields are seen as being allied but that they do not coincide. In practice, mathematicians are typically grouped with scientists at the gross level but separated at finer levels. This is one of many issues considered in the philosophy of mathematics.
Mathematical awards are generally kept separate from their equivalents in science. The most prestigious award in mathematics is the Fields Medal,[25][26] established in 1936 and now awarded every 4 years. It is often considered the equivalent of science's Nobel Prizes. The Wolf Prize in Mathematics, instituted in 1978, recognizes lifetime achievement, and another major international award, the Abel Prize, was introced in 2003. These are awarded for a particular body of work, which may be innovation, or resolution of an outstanding problem in an established field. A famous list of 23 such open problems, called "Hilbert's problems", was compiled in 1900 by German mathematician David Hilbert. This list achieved great celebrity among mathematicians, and at least nine of the problems have now been solved. A new list of seven important problems, titled the "Millennium Prize Problems", was published in 2000. Solution of each of these problems carries a $1 million reward, and only one (the Riemann hypothesis) is plicated in Hilbert's problems.