著名科学家霍
㈠ 著名的物理学家,数学家,名字是2个,有个霍字,是个残疾人,坐轮椅,叫什么
斯蒂芬·威廉·霍金,1942年1月8日出生,曾先后毕业于牛津大学和剑桥大学三一学院,并获剑桥大学哲学博士学位。在大学学习后期,开始患“肌肉萎缩性脊髓侧索硬化症”(运动神经元疾病),半身不遂。他克服身患残疾的种种困难,于1965年进入剑桥大学冈维尔和凯厄斯学院任研究员。这个时期,他在研究宇宙起源问题上,创立了宇宙之始是“无限密度的一点”的著名理论。1969年起任冈维尔和凯厄斯学院科学杰出成就研究员。1972-1975年先后在剑桥大学天文研究所、应用数学和理论物理学部进行研究工作,1975-1977年任重力物理学高级讲师,1977-1979年任教授,1979年起任卢卡斯讲座数学教授。其间,1974年当选为皇家学会最年轻的会员。1974-1975年为美国加利福尼亚理工学院费尔柴尔德讲座功勋学者。1978年获世界理论物理研究的最高奖爱因斯坦奖。霍金的成名始于对黑洞的研究成果。在爱因斯坦之后融合了20世纪另一个伟大理论——量子理论,他认为,宇宙是有限的,但无法找到边际,这如同地球表面有限但无法找到边际一样;时间也是有开始的,大约始于150亿到200亿年前。1988年获沃尔夫物理学奖。
1985年霍金丧失语言能力,表达思想唯一的工具是一台电脑声音合成器。他用仅能活动的几个手指操纵一个特制的鼠标器在电脑屏幕上选择字母、单词来造句,然后通过电脑播放声音,通常制造一个句子要5、6分钟,为了合成一个小时的录音演讲要准备10天。1988年写成科普著作《时间简史》,至1995年10月该书发行量已超过2500万册,译成几十种语言,中译本也已出版。
著有《空间-时间的大比例结构》(1973年与人合著)、《广义相对论:爱因斯坦百年评论》(1979年与人合编)、《超空间和超重力》(1981年与人合编)、《宇宙之始》(1983年与人合编)、《时间简史》(1988年)。
著有《空间-时间的大比例结构》(1973,合著)、《广义相对论:爱因斯坦百年评论》(1979,合编)、《超空间和超重力》(1981,合编)、《宇宙之始》(1983,合编)、《时间简史》(1988年)。
1990年与结婚25年之久的妻子简·怀尔德离婚。1995年9月16日,霍金与他的护士伊莱恩·梅森结婚。共有三个孩子。
1985年5月应邀访问中国。2002年8月来华出席国际数学家大会。
自己推翻了自己 霍金黑洞研究最新成果出炉 英国科学家霍金提出黑洞新假说
当代科学界有谁能和爱因斯坦相提并论,答案莫过于斯蒂芬·霍金。全身仅有几个手指可以活动的他,以其对现代物理学突出的贡献和特殊的人生经历成为世人眼中当之无愧的传奇人物。
霍金的成名始于他对黑洞的研究成果。在结合了广义相对论和量子理论进行研究之后。1974年3月1日,霍金在《自然》上发表论文,阐述了自己的新发现——黑洞是有辐射的。这一发现被认为是多年来理论物理学最重要的进展,他的论文也被称为“物理学史上最深刻的论文之一”。
从研究黑洞出发,霍金继续探索了宇宙的起源和归宿,解答了人类有史以来一直探索的问题:时间有没有开端,空间有没有边界。1983年霍金发表了自己的研究结论:宇宙是有限的,但无法找到边际,这如同地球表面有限但无法找到边际一样:时间也是有开始的,大约始于150亿到200亿年前。
1988年霍金的惊世之作《时间简史:从大爆炸到黑洞》问世。这本著作被誉为人类科学史上里程碑式的佳作。至1995年10月该书发行量已超过2500万册,译成几十种语言。
2001年,霍金完成了《时间简史》的姐妹篇《果壳中的宇宙》。霍金还与人合作编著出版了《空间—时间的大比例结构》(1973)、《广义相对论:爱因斯坦百年评论》(1979)、《超空间和超重力》(1981)和《宇宙之始》(1983)等著作。
霍金的传奇也源于他不凡的人生经历。早在大学学习后期,霍金被诊断为“肌肉萎缩性脊髓侧索硬化症”,不久半身不遂。1985年霍金丧失语言能力,表达思想唯一的工具是一台电脑声音合成器。他用仅能活动的几个手指操作一个特制的鼠标器在电脑屏幕上选择字母、单词来造句,然后通过电脑播放声音,通常制造一个句子要5、6分钟,为了合成一个小时的录音演讲要准备10天。尽管如此,霍金仍然热衷公众演讲,乐于与人们进行思想的交流,将科学的思想传播到世界各地。
霍金1942年1月8日出生于英国牛津,曾先后求学于牛津大学和剑桥大学三一学院,并获剑桥大学物理学博士学位。
1965年霍金进入剑桥大学冈维尔和凯厄斯学院任研究员。这个时期,他在研究宇宙起源问题上,创立了宇宙之始是“无限密度的一点”的著名理论。1969年霍金开始在冈维尔和凯厄斯学院科学院任杰出成就研究员。
1972年至1975年霍金先后在剑桥大学天文研究所、应用数学和理论物理学部从事研究工作,1975至1977年任重力物理学高级讲师,1977至1979年任教授。1979年起霍金任卢卡斯讲座数学教授,这个位置曾经属于科学巨匠牛顿。
现年60岁的霍金获得过许多荣誉及奖励。1974年他当选为皇家学会最年轻的会员,1974至1975年成为美国加利福尼亚理工学院费尔柴尔德讲座功勋学者。1978年霍金荣获世界理论物理研究的最高奖阿尔伯特.爱因斯坦奖。1988年获沃尔夫物理学奖。
1990年霍金与结婚25年的妻子简·怀尔德离婚,他和怀尔德有三个孩子。1995年霍金与他的护士伊莱恩·梅森结婚
㈡ 中国目前7位顶级科学家
在中国当前社会,能被称为顶尖科学家的至少也是院士级别了。那么2017有哪些优秀科学家?下面是小编整理的2017中国科学家排名的内容,希望能够帮到您。
2017科学家排名_2017中国顶尖科学家排行榜_2017有哪些优秀科学家
从院士制度设立以来,截止到2017年1月,我国一共产生了2300多位院士,另外,在国外也有345位华人当选为院士。在进行数据统计时,我国各省籍院士包括了中国科学院,中国工程院等。而欧美国家院士主要是指美国科学院,美国工程院,加拿大皇家学会,加拿大工程院,欧洲科学院,英国皇家学会,法国、德国和日本的科学院和工程院,瑞典皇家科学院和第三世界科学院等。几乎所有在世界上处于顶尖科学地位的机构和人员都进行了统计。
自古以来,江浙一带出人才。这句话绝不是浪得虚名,在这次的顶尖科学家人数统计中,江苏和浙江省的人数确实高的离谱。经过统计我们发现,无论是港台地区及欧美国家的院士还是我国的两院院士,江苏省和浙江省都位于前两名。两省院士人数占到全国全人数的34.3%。除此之外,广东省,福建省分别以177人和168人位于第三和第四位,由此可知东南沿海地区确实是出人才的。
特别需要指出的是,虽然北京和上海地区的高校当前拥有的院士人数最多,但是大多数院士的省籍并不是北京和上海的,毕竟两地的人口数量对比于其他省份并不是太多。最后,东南沿海出人才是和当地的经济以及家庭重视教育的程度有很大关系,特别是目前这些院士的年龄很多都在60岁以上。对于当时上世纪七八十年代的人来说,家庭富裕的人才更有机会接受学校教育。
中国目前7位顶级科学家
1.徐匡迪
2.姚期智
3.施一公
4.陈左宁
5.王坚
6.张泽民
7.高福
㈢ 科学家霍全的资料有吗
斯蒂芬·威廉·霍金,CH,CBE,FRS,FRSA(英语:Stephen William Hawking,1942年1月8日-),英国剑桥大学版著名物理学家权,被誉为继爱因斯坦之后最杰出的理论物理学家之一。肌肉萎缩性侧索硬化症患者,全身瘫痪,不能发音。 1979至2009年任卢卡斯数学教授,是英国最崇高的教授职位之一。
霍金是当代最重要的广义相对论和宇宙论家,是当今享有国际盛誉的伟人之一,被称为在世的最伟大的科学家之一,还被称为“宇宙之王”。
参考网络资料:http://ke..com/view/52207.htm
㈣ 著名的科学家有哪些
法国科学家拉瓦锡(1743-1794),在25岁那年开始对古希腊的物质观 (自然界的所有物质都是由水、火、土、空气四种元素所构成)怀疑;於是他积极的研究,改变了人们对「四元素说」的观念。接下来他从实验中证明,燃烧是物质和空气中「助燃的成份」结合,所以金属燃烧後,重量会增加。助燃的成份就是今天我们所称的「氧气」。使「燃素说」的观念被打破。
英国科学家波义耳(Robert Boyle, 1627-1691)在1657年读到一篇新发明的气体帮浦的报导,於是加以改良并用他来研究气体压力与体积关系。不久,他发表了研究的结果:一定量气体在定温之下,其体积与压力成反比,称为波义耳定律(Boyle's Law)波义耳利用他的帮浦抽掉一个桶子内的空气,在同一高度让一根羽毛及一块铅块同时自由落下,发现他们同时掉入桶子底部,证明了空气阻力的存在。这个实验在1971又由太空人史卡(David Scott)在月球上重复做了一次,得到相同的结果。
1787年,法国科学家查理(Jacques Alexandre Cesar Charles, 17 46 - 1823) 发现一定量的气体在定压下有热胀冷缩的现象。在此之前,查理成为第一个搭乘氢气球升空的人,他当时的高度大约是300 0公尺。查理在当时并没有发表他的研究成果,直到1801年,英国科学家道耳顿(John Dalton,1766-1844)才加以整理发表。
1802年,另一个法国科学家给吕萨克(Joseph Louis Gaylussac, 17 78-1850)独立地发现早先查理所发现的温度对气体体积的效应,并且进一步发现每增加 1℃,则气体体积改变他在0℃实体积的273 分之一。给吕萨克搭乘氢气球的高度也超过查理,1804年他创下了7016公尺的记录,此一记录维持了至少四十年之久。把查理和给吕萨克的发现合并起来就成为我们所谓的查理定律(Charles's Law) 即定量气体在定压得条件下,其体积与温度成正比。给吕萨克後来发现另一个以他为名的气体结合定律。
道耳吞(1766-1844),在1803年提出了「原子学说」,所有的物质都是由不可再分割且肉眼看不见的微小粒子所组成。发现了道耳吞定律(Dalton's
英国科学家亨利(WIlliam henry, 1775 -1836)发现在定温下溶解在液体中气体的量正比於液体上方这个气体的压力。也就是说,液体上方的这种气体压力越大,他就溶越多的气体在液体中,称为亨利定律(henry's Law)。
1901年12月10日第一届诺贝尔奖颁
德国科学家伦琴因发现X射线获诺贝尔物理学奖。
德国科学家贝林因血清疗法防治白喉,破伤风获诺贝尔生理学或医学奖。
1902年12月10日第二届诺贝尔奖颁发。
德国科学家费雪因合成嘌呤及其衍生物多肽获诺贝尔化学奖。
德国历史学家塞道尔·蒙森获诺贝尔文学奖。
1905年12月10日第五届诺贝尔奖颁发。
德国科学家勒纳因阴极射线的研究获得诺贝尔物理学奖。
德国科学家拜耳因研究有机染料及芳香剂等有机化合物获得诺贝尔化学奖。
德国科学家科赫因对细菌学的发展获诺贝尔生理学或医学奖。
1907年12月10日第七届诺贝尔奖颁发。
德国科学家毕希纳因发现无细胞发酵获诺贝尔化学奖。
1908年12月10日第八届诺贝尔奖颁发。
德国科学家埃尔利希因发明“606”、俄国科学家梅奇尼科夫因对免疫性的研究而共同获得诺贝尔生理学或医学奖。
德国作家欧肯因《伟大思想家的人生观》获诺贝尔文学奖。
1909年12月10日第九届诺贝尔奖颁发。
意大利科学家马可尼、德国科学家布劳恩因发明无线电报技术而共同获得诺贝尔物理学奖。
德国科学家奥斯特瓦尔德因催化、化学平衡和反应速度方面的开创性工作获诺贝尔化学奖
1910年12月10日第十届诺贝尔奖颁发。
德国科学家瓦拉赫因脂环族化合作用方面的开创性工作获诺贝尔化学奖。
德国作家海泽因小说《傲子女》、《天地之爱》等获诺贝尔文学奖。
1911年12月10日第十一届诺贝尔奖颁发。
德国科学家维恩因发现热辐射定律获诺贝尔物理学奖。
1912年12月10日第十二届诺贝尔奖颁发。
德国科学家格利雅因发现有机氢化物的格利雅试剂法、法国科学家萨巴蒂埃因研究金属催化加氢在有机化合成中的应用而共同获得诺贝尔化学奖。
德国作家霍普特曼因剧本《织工们》获诺贝尔文学奖。
1914年12月10日第十四届诺贝尔奖颁发。
德国科学家劳厄因发现晶体的X射线衍射获诺贝尔物理学奖。
1915年12月10日第十五届诺贝尔奖颁发。
德国科学家威尔泰特因对叶绿素化学结构的研究获诺贝尔化学奖。
1918年12月10日第十八届诺贝尔奖颁发。
德国科学家普朗克因创立量子论、发现基本量子获诺贝尔物理学奖。
德国科学家哈伯因氨的合成获诺贝尔化学奖。
注:本届诺贝尔奖仅颁发两项
1919年12月10日第十九届诺贝尔奖颁发。
德国科学家斯塔克因发现正离子射线的多普勒的效应和光线在电场中的分裂获诺贝尔物理学奖。
1920年12月10日第二十届诺贝尔奖颁发。
德国科学家能斯脱因发现热力学第三定律获诺贝尔化学奖。(1921年补发)
1921年12月10日第二十一届诺贝尔奖颁发。
美籍德裔科学家爱因斯坦阐明光电效应原理获诺贝尔物理学奖。
1922年12月10日第二十二届诺贝尔奖颁发。
英国科学家希尔因发现肌肉生热、德国科学家迈尔霍夫因研究肌肉中氧的消耗和乳酸代谢而共同获得诺贝尔生理学或医学奖。
1925年12月10日第二十五届诺贝尔奖颁发。
德国科学家弗兰克、赫兹因阐明原子受电子碰撞的能量转换定律而共同获得获诺贝尔物理学奖。
1926年12月10日第二十六届诺贝尔奖颁发。
法国人白里安因促进《洛迦诺和约》的签订、德国人施特莱斯曼因对欧洲各国的谅解作出贡献而共同获得诺贝尔和平奖。
1927年12月10日第二十七届诺贝尔奖颁发。
德国科学家维兰德因发现胆酸及其化学结构获诺贝尔化学奖。
1928年12月10日第二十八届诺贝尔奖颁发。
德国科学家温道斯因研究丙醇及其维生素的关系获诺贝尔化学奖。
1929年12月10日第二十九届诺贝尔奖颁发。
德国作家曼因小说《布登勃洛克一家》获诺贝尔文学奖。
1930年12月10日第三十届诺贝尔奖颁发。
德国科学家费歇尔因研究血红素和叶绿素,合成血红素获诺贝尔化学奖。
1931年12月10日第三十一届诺贝尔奖颁发。
德国科学家博施、伯吉龙斯因发明高压上应用的高压方法而共同获得诺贝尔化学奖。
德国科学家瓦尔堡因发现呼吸酶的性质的作用获诺贝尔生理学或医学奖。
1932年12月10日第三十二届诺贝尔奖颁发。
德国科学家海森堡因提出量子力学中的测不准原理获诺贝尔物理学奖。
1935年12月10日第三十五届诺贝尔奖颁发。
德国科学家斯佩曼因发现胚胎的组织效应获诺贝尔生理学或医学奖。
德国人奥西茨基因揭露德国秘密重整军备获诺贝尔和平奖。
1936年12月10日第三十六届诺贝尔奖颁发。
英国科学家戴尔、德国科学家勒维因发现神经脉冲的化学传递而共同获诺贝尔生理学或医学奖。
1938年12月10日第三十八届诺贝尔奖颁发。
德国科学家库恩因研究类胡萝卜素和维生素获诺贝尔化学奖。但因纳粹的阻挠而被迫放弃领奖。
1939年12月10日第三十九届诺贝尔奖颁发。
德国科学家布特南特因性激素方面的工作、瑞士科学家卢齐卡因聚甲烯和性激素方面的研究工作而共同获得诺贝尔化学奖。布特南特因纳粹的阻挠而被迫放弃领奖。
德国科学家多马克因发现磺胺的抗菌作用获诺贝尔生理学或医学奖,但因纳粹的阻挠而放弃。
1940年~1942年的诺贝尔奖因第二次世界大战爆发的影响而中断。
1944年12月10日第四十四届诺贝尔奖颁发。
德国科学家哈恩因发现重原子核的裂变获诺贝尔化学奖。
1946年12月10日第四十六届诺贝尔奖颁发。
瑞士籍德国作家黑塞因小说《玻璃球游戏》等获诺贝尔文学奖。
1950年12月10日第五十届诺贝尔奖颁发。
德国科学家狄尔斯、阿尔德因发现并发展了双稀合成法而共同获得诺贝尔化学奖。
1953年12月10日第五十三届诺贝尔奖颁发。
德国科学家施陶丁格因对高分子化学的研究获诺贝尔化学奖。
1954年12月10日第五十四届诺贝尔奖颁发。
德国科学家玻恩因对粒子波函数的统计解释、德国科学家博特因发明符合计数法而共同获得诺贝尔物理学奖。
1956年12月10日第五十六届诺贝尔奖颁发。
德国医生福斯曼、美国医生理查兹、库南德因发明心导管插入术和循环的变化而共同获得诺贝尔生理学或医学奖。
1961年12月10日第六十一届诺贝尔奖颁发。
美国科学家霍夫斯塔特因确定原子核的形状与大小、德国科学家穆斯堡尔因发现穆斯堡尔效应而共同获得诺贝尔物理学奖。
1963年12月10日第六十三届诺贝尔奖颁发。
德国科学家詹森、美国科学家梅耶因创立原子核结构的壳模型理论、美国科学家维格纳因发现原子核中质子和中子相互作用力的对称原理而共同获得诺贝尔物理学奖。
意大利科学家纳塔、德国科学家齐格勒因合成高分子塑料而共同获得诺贝尔化学奖。
1967年12月10日第六十七届诺贝尔奖颁发。
德国科学家艾根、英国科学家波特因发明快速测定化学反应的技术而共同获得诺贝尔化学奖。
1971年12月10日第七十一届诺贝尔奖颁发。
德国总理(前西德)勃兰特因“缓和二次大战后欧洲紧张局势”获诺贝尔和平奖。
1972年12月10日第七十二届诺贝尔奖颁发。
德国作家伯尔因对复兴德国文学作出了贡献获诺贝尔文学奖。
1973年12月10日第七十三届诺贝尔奖颁发。
德国科学家费舍尔、英国科学家威尔金森因有机金属化学的广泛研究而共同获得诺贝尔化学奖。
1979年12月10日第七十九届诺贝尔奖颁发。
美国科学家布朗因、德国科学家维蒂希因在有机物合成中引入硼和磷而共获得诺贝尔化学奖。
1985年12月10日第八十五届诺贝尔奖颁发。
德国科学家冯克利津因发现量子霍尔效应获诺贝尔物理学奖。
1986年12月10日第八十六届诺贝尔奖颁发。
德国科学家鲁斯卡、比尼格、瑞士科学家罗勒因研制出扫描式隧道效应显微镜而共同获得诺贝尔物理学奖。
美国科学家赫希巴赫、美籍华裔科学家李远哲因发现交叉分子束方法、德国科学家波拉尼因发明红外线化学研究方法而共同获得诺贝尔化学奖。
1987年12月10日第八十七届诺贝尔奖颁发。
瑞士科学家米勒、德国科学家柏诺兹因发现新型超导材料而共同获得诺贝尔物理学奖。
1988年12月10日第八十八届诺贝尔奖颁发。
德国科学家戴森霍费尔、胡贝尔、米歇尔因第一次阐明由膜束的蛋白质形成的全部细节而共同获得诺贝尔化学奖。
1989年12月10日第八十九届诺贝尔奖颁发。
美国科学家拉姆齐因发明观测原子辐射和计量原子辐射频率的精确方法、美国科学家德默尔特因创造冷却捕集电子的方法、德国科学家保罗因在50年代发明的“保罗捕集法”而共同获得诺贝尔物理学奖。
1991年12月10日第九十一届诺贝尔奖颁发。
德国科学家内尔、扎克曼因发现细胞中单离子道功能,发展出一种能记录极微弱电流通过单离子道的技术而共同获得诺贝尔生理学或医学奖。
1995年12月10日第九十五届诺贝尔奖颁发。
德国科学家克鲁岑、美国科学家莫利纳、罗兰因阐述了对臭氧层产生影响的化学机理,证明了人造化学物质对臭氧层构成破坏作用,而共同获得诺贝尔化学奖。
美国科学家刘易斯、维绍斯、德国科学家福尔哈德因发现了控制早期胚胎发育的重要遗传机理,并利用果蝇作为实验系统,发现了同样适用于高等有机体(包括人)的遗传机理,而共同获得诺贝尔医学及生理学奖。
1999年12月10日第九十九届诺贝尔奖颁发
德国作家君特.格拉斯因《铁皮鼓》、《我的世纪》等作品而获得诺贝尔文学奖。
2001年12月10日第一百零一届诺贝尔奖颁发。
德国科学家克特勒、美国科学家康奈尔、维曼因在碱性原子稀薄气体的玻色-爱因斯坦凝聚态,以及凝聚态物质性质早期基础性研究方面取得的成就,而共同获得诺贝尔物理学奖。
中国古代:蔡伦 张衡 马均 一行 毕升 沈括 徐光启(等等)
中国近现代:严复 李善兰 侯德榜 李四光 钱学森 邓稼先 袁隆平 吴文俊 王选(等等)
古希腊:阿基米德 德摩克斯勒 亚里士多德 毕达哥拉斯(等等)
古罗马:普林尼父子 托密勒(等等)
意大利:布鲁诺 伽利略 阿伏加德罗 马可尼(等等)
德国:开普勒 赫兹 欧姆 魏格纳 普朗克 爱因斯坦(等等)
英国:哈维 牛顿 卡文迪许 布朗 法拉第 道尔顿 达尔文 焦耳 汤姆生父子 卢瑟福 麦克斯维 霍金(等等)
法国:安培 笛卡尔 勒夏特列 巴斯德 德布罗意(等等)
美国:卡布莱拉 亨利 爱迪生 莱特兄弟 戴维森 奥本海莫(等等)
波兰:哥白尼 居里夫人(等等)
奥地利:孟德尔 多普勒(等等)
丹麦:奥斯特 珀尔(等等)
俄国:门捷列夫 盖斯 扎依采夫(等等)
荷兰:惠更斯(等等)
瑞典:诺贝尔(等等)
㈤ 中国著名的科学家名字
1、钱学森是中国科学院和中国工程院的院士,更是中国“两弹一星”功勋奖章的获得者,有“中国航天之父”“中国导弹之父”“中国自动化控制之父”和“火箭之王”的美称。
因为钱学森回国效力(是在毛泽东主席和周恩来总理的争取下),使得中国的导弹,原子弹的发射向前推进了至少20年。他的代表作有《工程控制论》,《物理力学讲义》,《星际航行概论》,《论系统工程》。
2、邓稼先是中国科学院院士,是著名的核物理学家,科学家。邓稼先设计了中国原子弹和氢弹,被誉为“两弹元勋”。他是中国核武器研制工作的开拓者和奠基者,为我国的核武器和原子武器的研发做出了重要贡献。
3、华罗庚是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,并被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。
国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等。有“中国现代数学之父”“中国数学之神”“人民数学家”的美称。
4、李四光是地质学家,教育家。中国地质力学的创立者、中国现代地球科学和地质工作的主要领导人和奠基人之一,新中国成立后第一批杰出的科学家和为新中国发展做出卓越贡献的元勋,2009年当选为100位新中国成立以来感动中国人物之一。他的代表作是《地质力学之基础与方法》和《地质力学概论》。
5、袁隆平他是中国杂交水稻育种专家,是中国研究与发展杂交水稻的开创者,有“世界杂交水稻之父”的美称。于2000年度获得国家最高科技学技术奖。他的代表作有《袁隆平论文集》,《两系法杂交水稻研究论文集》和《杂交水稻育种栽培学》。
㈥ 世界上著名的科学家有哪些
世界上著名的科学家有:
汤姆逊(1856—1940)英国物理学家。1897发现物质结构的第一种基本粒子一电子。
富尔顿(1765—1815)美国发明家。1807年,富尔顿制成蒸汽汽船。
本茨(1844一1929)德国工程师。1868年,制成世界上第一辆三轮内燃机汽车。
伏打(1745-1829)意大分物理学家。1800年,他制成伏打电堆,不久又发明伏打电池,使人们第一次获得了稳定而持续的电流。
奥托(1832一1891)德国工程师。1876年,制成第一台四冲程循环的煤气内燃机。使汽车和其后飞机的问世成为可能。
戴姆勒(1834一1900)德国机械工程师。1883年制成的第一台汽油机,1886年又制成世界上第一辆四轮内燃机汽车。
帕森斯(1854—1931)英国发明家。1884年制成第一台多级反动式汽轮机。
狄塞尔(1858-1913)德国工程师。1897年制造了第一台柴油机。
贝塞麦(1813—1898)英国工程师。1856年发明转炉炼钢法。
爱迪生(1847—1931)美国发明家。他一生完成1300多项发明,对人类产生了巨大影响。1897年,他成功地研制出白炽灯。
莫尔斯(1791—1872)美国发明家。1837年,发明电报机,1844年5月24日,拍发出世界上第一封电报。
贝尔(1847—1922)美国发明家。1876年发明电话。
马可尼(1874—1937)意大利工程师。1895年发明无线电报。1899年3月28日,他成功地实现了无线电通信。
诺贝尔(1833-1896)瑞典发明家。1867年发明安全炸药。
㈦ 科学家的事迹
爱因斯坦的学生时代
艾伯特·爱因斯坦于1879年3月14日在德国小城乌尔姆出生,他的父母都是犹太人。爱因斯坦有一个幸福的童年,他的父亲是位平静、温顺的好心人,爱好文学和数学。他的母亲个性较强,喜爱音乐,并影响了爱因斯坦,爱因斯坦从六岁起学小提琴,从此小提琴成为他的终生伴侣。爱因斯坦的父母对他有着良好的影响和家庭教育,家中弥漫着自由的精神和祥和的气氛。
和牛顿一样,爱因斯坦年幼时也未显出智力超群,相反,到了四岁多还不会说话,家里人甚至担心他是个低能儿。六岁时他进入了国民学校,是一个十分沉静的孩子,喜欢玩一些需要耐心和坚韧的游戏,例如用纸片搭房子。1888年进入了中学后,学业也不突出,除了数学很好以外,其他功课都不怎么样,尤其是拉丁文和希腊文,他对古典语言毫无兴趣。当时的德国学校必须接受宗教教育,开始时爱因斯坦非常认真,但当他读了通俗的科学书籍后,认识到宗教里有许多故事是不真实的。12岁时他放弃了对宗教的信仰,并对所有权威和社会环境中的信念产生了怀疑,并发展成一种自由的思想。爱因斯坦发现周围有一个巨大的自然世界,它离开人类独立存在,就象一个永恒的谜。他看到,许多他非常尊敬和钦佩的人在专心从事这项事业时,找到了内心的自由和安宁。于是,少年时代的爱因斯坦就选择了科学事业,希望掌握这个自然世界的奥秘,而一旦选择了这一道路,就坚持不懈地走了下去,从来没有后悔过。
1895年,爱因斯坦来到瑞士苏黎世,准备投考苏黎世的联邦工业大学,虽然他的数学和物理考得很不错,但其他科目没有考好,学校校长推荐他去瑞士的阿劳州立中学学习一年,以补齐功课。在阿劳州立中学的这段时光中使爱因斯坦感到快乐,他尝到了瑞士自由的空气和阳光,并决心放弃德国国籍。
1896年,爱因斯坦正式成为一个无国籍的人,并考进了联邦工业大学。大学期间,爱因斯坦迷上了物理学,一方面,他阅读了德国著名物理学家基尔霍夫、赫兹等人的著作,钻研了麦克斯韦的电磁理论和马赫的力学,并经常去理论物理学教授的家中请教。另一方面,他的大部分时间是去物理实验室去做实验,迷恋于直接观察和测量。1900年,爱因斯坦大学毕业。1901年,他获得了瑞士国籍。1902年,在他的朋友格罗斯曼的帮助下,爱因斯坦终于在伯尔尼的瑞士联邦专利局找到了一份稳定的工作——当技术员。
狭义相对论的创立
早在16岁时,爱因斯坦就从书本上了解到光是以很快速度前进的电磁波,他产生了一个想法,如果一个人以光的速度运动,他将看到一幅什么样的世界景象呢?他将看不到前进的光,只能看到在空间里振荡着却停滞不前的电磁场。这种事可能发生吗?
与此相联系,他非常想探讨与光波有关的所谓以太的问题。以太这个名词源于希腊,用以代表组成天上物体的基本元素。17世纪,笛卡尔首次将它引入科学,作为传播光的媒质。其后,惠更斯进一步发展了以太学说,认为荷载光波的媒介物是以太,它应该充满包括真空在内的全部空间,并能渗透到通常的物质中。与惠更斯的看法不同,牛顿提出了光的微粒说。牛顿认为,发光体发射出的是以直线运动的微粒粒子流,粒子流冲击视网膜就引起视觉。18世纪牛顿的微粒说占了上风,然而到了19世纪,却是波动说占了绝对优势,以太的学说也因此大大发展。当时的看法是,波的传播要依赖于媒质,因为光可以在真空中传播,传播光波的媒质是充满整个空间的以太,也叫光以太。与此同时,电磁学得到了蓬勃发展,经过麦克斯韦、赫兹等人的努力,形成了成熟的电磁现象的动力学理论——电动力学,并从理论与实践上将光和电磁现象统一起来,认为光就是一定频率范围内的电磁波,从而将光的波动理论与电磁理论统一起来。以太不仅是光波的载体,也成了电磁场的载体。直到19世纪末,人们企图寻找以太,然而从未在实验中发现以太。
但是,电动力学遇到了一个重大的问题,就是与牛顿力学所遵从的相对性原理不一致。关于相对性原理的思想,早在伽利略和牛顿时期就已经有了。电磁学的发展最初也是纳入牛顿力学的框架,但在解释运动物体的电磁过程时却遇到了困难。按照麦克斯韦理论,真空中电磁波的速度,也就是光的速度是一个恒量,然而按照牛顿力学的速度加法原理,不同惯性系的光速不同,这就出现了一个问题:适用于力学的相对性原理是否适用于电磁学?例如,有两辆汽车,一辆向你驶近,一辆驶离。你看到前一辆车的灯光向你靠近,后一辆车的灯光远离。按照麦克斯韦的理论,这两种光的速度相同,汽车的速度在其中不起作用。但根据伽利略理论,这两项的测量结果不同。向你驶来的车将发出的光加速,即前车的光速=光速+车速;而驶离车的光速较慢,因为后车的光速=光速-车速。麦克斯韦与伽利略关于速度的说法明显相悖。我们如何解决这一分歧呢?
19世纪理论物理学达到了巅峰状态,但其中也隐含着巨大的危机。海王星的发现显示出牛顿力学无比强大的理论威力,电磁学与力学的统一使物理学显示出一种形式上的完整,并被誉为“一座庄严雄伟的建筑体系和动人心弦的美丽的庙堂”。在人们的心目中,古典物理学已经达到了近乎完美的程度。德国著名的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:“年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一生献给这门学科,太可惜了。”
爱因斯坦似乎就是那个将构建崭新的物理学大厦的人。在伯尔尼专利局的日子里,爱因斯坦广泛关注物理学界的前沿动态,在许多问题上深入思考,并形成了自己独特的见解。在十年的探索过程中,爱因斯坦认真研究了麦克斯韦电磁理论,特别是经过赫兹和洛伦兹发展和阐述的电动力学。爱因斯坦坚信电磁理论是完全正确的,但是有一个问题使他不安,这就是绝对参照系以太的存在。他阅读了许多著作发现,所有人试图证明以太存在的试验都是失败的。经过研究爱因斯坦发现,除了作为绝对参照系和电磁场的荷载物外,以太在洛伦兹理论中已经没有实际意义。于是他想到:以及绝对参照系是必要的吗?电磁场一定要有荷载物吗?
爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,他相信世界的统一性和逻辑的一致性。相对性原理已经在力学中被广泛证明,但在电动力学中却无法成立,对于物理学这两个理论体系在逻辑上的不一致,爱因斯坦提出了怀疑。他认为,相对论原理应该普遍成立,因此电磁理论对于各个惯性系应该具有同样的形式,但在这里出现了光速的问题。光速是不变的量还是可变的量,成为相对性原理是否普遍成立的首要问题。当时的物理学家一般都相信以太,也就是相信存在着绝对参照系,这是受到牛顿的绝对空间概念的影响。19世纪末,马赫在所著的《发展中的力学》中,批判了牛顿的绝对时空观,这给爱因斯坦留下了深刻的印象。1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。
1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含了狭义相对论的基本思想和基本内容。狭义相对论所根据的是两条原理:相对性原理和光速不变原理。爱因斯坦解决问题的出发点,是他坚信相对性原理。伽利略最早阐明过相对性原理的思想,但他没有对时间和空间给出过明确的定义。牛顿建立力学体系时也讲了相对性思想,但又定义了绝对空间、绝对时间和绝对运动,在这个问题上他是矛盾的。而爱因斯坦大大发展了相对性原理,在他看来,根本不存在绝对静止的空间,同样不存在绝对同一的时间,所有时间和空间都是和运动的物体联系在一起的。对于任何一个参照系和坐标系,都只有属于这个参照系和坐标系的空间和时间。对于一切惯性系,运用该参照系的空间和时间所表达的物理规律,它们的形式都是相同的,这就是相对性原理,严格地说是狭义的相对性原理。在这篇文章中,爱因斯坦没有多讨论将光速不变作为基本原理的根据,他提出光速不变是一个大胆的假设,是从电磁理论和相对性原理的要求而提出来的。这篇文章是爱因斯坦多年来思考以太与电动力学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太漂流是不存在的。
什么是同时性的相对性?不同地方的两个事件我们何以知道它是同时发生的呢?一般来说,我们会通过信号来确认。为了得知异地事件的同时性我们就得知道信号的传递速度,但如何没出这一速度呢?我们必须测出两地的空间距离以及信号传递所需的时间,空间距离的测量很简单,麻烦在于测量时间,我们必须假定两地各有一只已经对好了的钟,从两个钟的读数可以知道信号传播的时间。但我们如何知道异地的钟对好了呢?答案是还需要一种信号。这个信号能否将钟对好?如果按照先前的思路,它又需要一种新信号,这样无穷后退,异地的同时性实际上无法确认。不过有一点是明确的,同时性必与一种信号相联系,否则我们说这两件事同时发生是没有意义的。
光信号可能是用来对时钟最合适的信号,但光速不是无限大,这样就产生一个新奇的结论,对于静止的观察者同时的两件事,对于运动的观察者就不是同时的。我们设想一个高速运行的列车,它的速度接近光速。列车通过站台时,甲站在站台上,有两道闪电在甲眼前闪过,一道在火车前端,一道在后端,并在火车两端及平台的相应部位留下痕迹,通过测量,甲与列车两端的间距相等,得出的结论是,甲是同时看到两道闪电的。因此对甲来说,收到的两个光信号在同一时间间隔内传播同样的距离,并同时到达他所在位置,这两起事件必然在同一时间发生,它们是同时的。但对于在列车内部正中央的乙,情况则不同,因为乙与高速运行的列车一同运动,因此他会先截取向着他传播的前端信号,然后收到从后端传来的光信号。对乙来说,这两起事件是不同时的。也就是说,同时性不是绝对的,而取决于观察者的运动状态。这一结论否定了牛顿力学中引以为基础的绝对时间和绝对空间框架。
相对论认为,光速在所有惯性参考系中不变,它是物体运动的最大速度。由于相对论效应,运动物体的长度会变短,运动物体的时间膨胀。但由于日常生活中所遇到的问题,运动速度都是很低的(与光速相比),看不出相对论效应。
爱因斯坦在时空观的彻底变革的基础上建立了相对论力学,指出质量随着速度的增加而增加,当速度接近光速时,质量趋于无穷大。他并且给出了著名的质能关系式:E=mc2,质能关系式对后来发展的原子能事业起到了指导作用。
广义相对论的建立
1905年,爱因斯坦发表了关于狭义相对论的第一篇文章后,并没有立即引起很大的反响。但是德国物理学的权威人士普朗克注意到了他的文章,认为爱因斯坦的工作可以与哥白尼相媲美,正是由于普朗克的推动,相对论很快成为人们研究和讨论的课题,爱因斯坦也受到了学术界的注意。
1907年,爱因斯坦听从友人的建议,提交了那篇著名的论文申请联邦工业大学的编外讲师职位,但得到的答复是论文无法理解。虽然在德国物理学界爱因斯坦已经很有名气,但在瑞士,他却得不到一个大学的教职,许多有名望的人开始为他鸣不平,1908年,爱因斯坦终于得到了编外讲师的职位,并在第二年当上了副教授。1912年,爱因斯坦当上了教授,1913年,应普朗克之邀担任新成立的威廉皇帝物理研究所所长和柏林大学教授。
在此期间,爱因斯坦在考虑将已经建立的相对论推广,对于他来说,有两个问题使他不安。第一个是引力问题,狭义相对论对于力学、热力学和电动力学的物理规律是正确的,但是它不能解释引力问题。牛顿的引力理论是超距的,两个物体之间的引力作用在瞬间传递,即以无穷大的速度传递,这与相对论依据的场的观点和极限的光速冲突。第二个是非惯性系问题,狭义相对论与以前的物理学规律一样,都只适用于惯性系。但事实上却很难找到真正的惯性系。从逻辑上说,一切自然规律不应该局限于惯性系,必须考虑非惯性系。狭义相对论很难解释所谓的双生了佯谬,该佯谬说的是,有一对孪生兄弟,哥在宇宙飞船上以接近光速的速度做宇宙航行,根据相对论效应,高速运动的时钟变慢,等哥哥回来,弟弟已经变得很老了,因为地球上已经经历了几十年。而按照相对性原理,飞船相对于地球高速运动,地球相对于飞船也高速运动,弟弟看哥哥变年轻了,哥哥看弟弟也应该年轻了。这个问题简直没法回答。实际上,狭义相对论只处理匀速直线运动,而哥哥要回来必须经过一个变速运动过程,这是相对论无法处理的。正在人们忙于理解相对狭义相对论时,爱因斯坦正在接受完成广义相对论。
1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原理的思想又不断发展。他以惯性质量和引力质量成正比的自然规律作为等效原理的根据,提出在无限小的体积中均匀的引力场完全可以代替加速运动的参照系。爱因斯坦并且提出了封闭箱的说法:在一封闭箱中的观察者,不管用什么方法也无法确定他究竟是静止于一个引力场中,还是处在没有引力场却在作加速运动的空间中,这是解释等效原理最常用的说法,而惯性质量与引力质量相等是等效原理一个自然的推论。
1915年11月,爱因斯坦先后向普鲁士科学院提交了四篇论文,在这四篇论文中,他提出了新的看法,证明了水星近日点的进动,并给出了正确的引力场方程。至此,广义相对论的基本问题都解决了,广义相对论诞生了。1916年,爱因斯坦完成了长篇论文《广义相对论的基础》,在这篇文章中,爱因斯坦首先将以前适用于惯性系的相对论称为狭义相对论,将只对于惯性系物理规律同样成立的原理称为狭义相对性原理,并进一步表述了广义相对性原理:物理学的定律必须对于无论哪种方式运动着的参照系都成立。
爱因斯坦的广义相对论认为,由于有物质的存在,空间和时间会发生弯曲,而引力场实际上是一个弯曲的时空。爱因斯坦用太阳引力使空间弯曲的理论,很好地解释了水星近日点进动中一直无法解释的43秒。广义相对论的第二大预言是引力红移,即在强引力场中光谱向红端移动,20年代,天文学家在天文观测中证实了这一点。广义相对论的第三大预言是引力场使光线偏转,。最靠近地球的大引力场是太阳引力场,爱因斯坦预言,遥远的星光如果掠过太阳表面将会发生一点七秒的偏转。1919年,在英国天文学家爱丁顿的鼓动下,英国派出了两支远征队分赴两地观察日全食,经过认真的研究得出最后的结论是:星光在太阳附近的确发生了一点七秒的偏转。英国皇家学会和皇家天文学会正式宣读了观测报告,确认广义相对论的结论是正确的。会上,著名物理学家、皇家学会会长汤姆孙说:“这是自从牛顿时代以来所取得的关于万有引力理论的最重大的成果”,“爱因斯坦的相对论是人类思想最伟大的成果之一”。爱因斯坦成了新闻人物,他在1916年写了一本通俗介绍相对认的书《狭义相对论与广义相对论浅说》,到1922年已经再版了40次,还被译成了十几种文字,广为流传。
相对论的意义
狭义相对论和广义相对论建立以来,已经过去了很长时间,它经受住了实践和历史的考验,是人们普遍承认的真理。相对论对于现代物理学的发展和现代人类思相的发展都有巨大的影响。 相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。这就从根本上解决了以前物理学只限于惯性系数的问题,从逻辑上得到了合理的安排。相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。
狭义相对论给出了物体在高速运动下的运动规律,并提示了质量与能量相当,给出了质能关系式。这两项成果对低速运动的宏观物体并不明显,但在研究微观粒子时却显示了极端的重要性。因为微观粒子的运动速度一般都比较快,有的接近甚至达到光速,所以粒子的物理学离不开相对论。质能关系式不仅为量子理论的建立和发展创造了必要的条件,而且为原子核物理学的发展和应用提供了根据。
广义相对论建立了完善的引力理论,而引力理论主要涉及的是天体。到现在,相对论宇宙学进一步发展,而引力波物理、致密天体物理和黑洞物理这些属于相对论天体物理学的分支学科都有一定的进展,吸引了许多科学家进行研究。
一位法国物理学家曾经这样评价爱因斯坦:“在我们这一时代的物理学家中,爱因斯坦将位于最前列。他现在是、将来也还是人类宇宙中最有光辉的巨星之一”,“按照我的看法,他也许比牛顿更伟大,因为他对于科学的贡献,更加深入地进入了人类思想基本要领的结构中。”
㈧ 名字中带有“霍”子的著名人物
霍去病
霍去病,西汉名将(前140—前117),汉族,军事家。河东平阳(今山西临汾西南)人。汉代名将卫青的外甥,善骑射。与卫青被称为帝国双璧。河西之战,他用兵灵活,注重方略,不拘古法,勇猛果断,善于长途奔袭、闪电战和大迂回、大穿插作战,每战皆胜,深得武帝信任。留下了“匈奴未灭,何以家为”的千古名句。赵云、岳飞都引用过霍去病的名言辞让皇帝赐予的华屋美宅,也足见名将与名将之间的相互认同感,至于唐诗宋词中霍嫖姚、汉家大将、封狼居胥更是用老了的典故。元狩六年(前117)病卒,年仅24岁(虚岁)。
霍金
史蒂芬·威廉·霍金(Stephen William Hawking),1942年1月8日出生于英国牛津,英国剑桥大学应用数学与理论物理学系物理学家,著名物理学家、宇宙学家、数学家。霍金毕业于牛津大学、剑桥大学,1979年至2009年任卢卡斯数学教授,后为荣誉卢卡斯数学教授(牛顿曾任此职,是人类历史上最伟大的教授职位)。霍金是继爱因斯坦之后最杰出的理论物理学家和当代最伟大的科学家,人类历史上最伟大的人物之一,被誉为“宇宙之王”。他的代表作品有《时间简史》、《果壳中的宇宙》、《大设计》等,获得荣誉有总统自由勋章(2009年)、科普利奖(2006年)、沃尔夫物理奖(1988年)、爱因斯坦奖章(1978年)等。2015年7月20日,史蒂芬•霍金启动了人类历史上规模最大的外星智慧生命的搜索行动。该行动将通过扫描宇宙的方式进行搜寻,历时十年,并将耗费一亿美元。2016年1月,史蒂芬·威廉·霍金获得卢德奖。
霍元甲
霍元甲(1868年1月18日-1910年9月14日),清末著名爱国武术家,字俊卿,生于天津静海县。霍元甲出身镖师家庭,继承家传“迷踪拳”绝技。幼年体弱,在27岁以前基本上生活在故乡,时常挑柴到天津去卖。28岁后到天津当上码头装卸工,后来在农劲荪开设的怀庆药栈当帮工,升任掌柜。1909年,41岁的霍元甲,由农劲荪介绍来上海,接受由陈公哲、陈铁生所创办“精武体操会”中主教武术。被评为沧州十大武术名人。孙中山对霍元甲“以武保国强种”的胆识给予了很高的评价。在精武会成立10周年之际,他亲临大会,题写了“尚武精神”四个大字,以示对霍元甲的纪念。
㈨ 世界上著名的科学家都有哪些
1.玛丽·居里
玛丽·居里(Marie Curie,1867年11月7日—1934年7月4日),出生于华沙,世称“居里夫人”,全名玛丽亚·斯克沃多夫斯卡·居里(Maria Skłodowska Curie),法国著名波兰裔科学家、物理学家、化学家。
2.斯蒂芬·威廉·霍金
斯蒂芬·威廉·霍金(Stephen William Hawking),1942年1月8日出生于英国牛津,英国剑桥大学著名物理学家,现代最伟大的物理学家之一、20世纪享有国际盛誉的伟人之一。
3.艾萨克·牛顿
艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,网络全书式的“全才”,著有《自然哲学的数学原理》、《光学》。
4.朱光亚
朱光亚(1924.12.25~2011.2.26),汉族,湖北武汉人,中国核科学事业的主要开拓者之一,吉林大学物理学创始人之一,“两弹一星功勋奖章”获得者,入选“感动中国2011年度人物”,被誉为“中国工程科学界支柱性的科学家”、“中国科技众帅之帅”。
5.埃尔温·薛定谔
埃尔温·薛定谔(Erwin Schrödinger,1887年8月12日—1961年1月4日),奥地利物理学家,量子力学奠基人之一,发展了分子生物学。维也纳大学哲学博士。苏黎世大学、柏林大学和格拉茨大学教授。在都柏林高级研究所理论物理学研究组中工作17年。因发展了原子理论,和狄拉克(Paul Dirac)共获1933年诺贝尔物理学奖。又于1937年荣获马克斯·普朗克奖章。
6.阿基米德
阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、网络式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。阿基米德曾说过:“给我一个支点,我就能撬起整个地球。
7.王选
王选(1937.2.5-2006.2.13),江苏无锡人,出生于上海, 计算机文字信息处理专家,当代中国印刷业革命的先行者,计算机汉字激光照排技术创始人,被称为“汉字激光照排系统之父”,被誉为“有市场眼光的科学家”。
8.孙家栋
孙家栋,1929年4月生于辽宁瓦房店市,中科院院士、探月工程总设计师。
9.丁肇中
丁肇中,男,1936年1月27日生于美国密歇根州安阿伯城,祖籍是中国山东省日照市,世界著名实验物理学家,复旦大学荣誉教授。
10.钱学森
钱学森(1911.12.11-2009.10.31),汉族,吴越王钱镠第33世孙,生于上海,祖籍浙江省杭州市临安。世界著名科学家,空气动力学家,中国载人航天奠基人,中国科学院及中国工程院院士,中国两弹一星功勋奖章获得者,被誉为“中国航天之父”“中国导弹之父”“中国自动化控制之父”和“火箭之王”,由于钱学森回国效力,中国导弹、原子弹的发射向前推进了至少20年。
0