速度科学家
❶ 速度,速度!!有什么有关科学家的电影
一、《星球大战》系列六部曲
影片故事围绕在奴隶帝国及一小批叛军的太空战事上。《星球大战》中,马克汉弥尔与他结盟的朋友共同维护宇宙和平;《帝国大反击》故事延续《星球大战》,并加入新的结盟者,继续一场正、邪对抗的太空大战。科学家们选出这两部电影,可能是对《星球大战》最初三部曲系列存有怀旧之情,并非全为了片中的科学情节。这两片上映后,掀起一股《星球大战》玩具及游戏的流行风,成为日后多部太空电影及科幻小说的模板。
二、《魔鬼终结者》
在2029年主宰地球的计算机,为进一步灭绝人类及遏止人类反抗,派出机器人回到二十世纪,杀死人类领袖的母亲,但计划失败。续集中,计算机派出更厉害的液体金属机器人再度执行暗杀行动,但“终结者机器人”保护了未来人类领袖及其母亲。英国牛津大学量子物理学家德意志认为,虽然此片在讲述时间旅行上有些前后矛盾,却仍是同类型电影中的佳作。
三、《黑客帝国》
主角是二十二世纪计算机高手,经常被梦境困扰,后来他发现自己的生活被来自邪恶网络世界的无形力量操纵,最后发现人类原来生活在一个“虚拟现实世界”中而不自知。主角决定拯救人类,挺身对抗邪恶网络世界。加拿大多伦多大学细胞生物学家麦克说,片中人类能轻易地在大楼之间跳来跳去,看来有点超现实,但“也保有一贯的娱乐价值,也就是坏人与好人在未来世界里还是斗来斗去。”
四、《异形》系列
一艘负责开采星球矿石的宇宙飞船载着七名队员,在返回地球途中接到一颗不知名星球的求救讯号,队员们前往调查。不料,外星怪物寄生在一队员体内,后来还破体而出吞下队员,最后剩下一名女队员与怪物进行殊死战。英国伦敦大学学院航天暨极地医学中心负责人方凯文认为,此片描述了长途太空旅程的过程,使“我们首次知道未来人类在太空工作及生活时,可能会在宇宙飞船上吃薄饼、吸烟和玩纸牌来打发时间”。
❷ 对于地球在以前的转动速度,科学家是通过什么方式测出来的
地球自转:地球绕自转轴自西向东的转动,从北极点上空看呈逆时针旋转 ,从南极点上空看呈顺时针旋转。关于地球自转的各种理论目前都还是假说。地球自转是地球的一种重要运动形式,自转的平均角速度为 4.167×10^(-3)度/秒,在地球赤道上的自转线速度为465米/秒。地球自转一周耗时23小时56分,约每隔10年自转周期会增加或者减少千分之三至千分之四秒。一般而言,地球的自转是均匀的。但精密的天文观测表明,地球自转存在这3种不同的变化:①长期减慢;②周期性变化;③不规则变化。
❸ 科学家是怎么测试声音传播速度的
1)就是两个人相距s米的距离。一个人a手里拿着秒表,一个人b手里拿着手电。b在叫的同时开灯。a看到灯亮计时,听到时间后停止计时。a计时t秒.声速v=s/t
(2)
利用超声波遇到物体发生反射,超声波发生器通过电缆线连与超声接受器连为一体,接受器能将接收到的超声波信号进行处理并在电脑屏慕上显示其波形,超声波发生器每隔固定时间发射一短促的超声波信号,而接收到的由于障碍物反射回的超声波信号经仪器处理后也可在电脑屏上显示出来(两个波的形状一大一小便于区分),每个反射波与相应的发射波之间的滞后的时间可经电脑的处理输出,即能直接从电脑上读出一个超声波发射后遇到障碍物返回来的时间间隔,只要你事先测出超声波发生器到障碍物之间的距离S,并将S除以往返时间的一半就是声音在空气里的传播速度了。(超声波在空气中的传播速度跟一般人能听得到的声波速度是相等的)。
❹ 速度是光的速度,求解科学家是怎么计算光所走的时间
可在网络上查到相关资料,算是科学史的内容。
光速的测定在光学的发展史上具有非常特殊而重要的意义。它不仅推动了光学实验,也打破了光速无限的传统观念;在物理学理论研究的发展里程中,它不仅为粒子说和波动说的争论提供了判定的依据,而且最终推动了爱因斯坦相对论理论的发展。
在光速的问题上物理学界曾经产生过争执,开普勒和笛卡尔都认为光的传播不需要时间,是在瞬时进行的。但伽利略认为光速虽然传播得很快,但却是可以测定的。1607年,伽利略进行了最早的测量光速的实验。
伽利略的方法是,让两个人分别站在相距一英里的两座山上,每个人拿一个灯,第一个人先举起灯,当第二个人看到第一个人的灯时立即举起自己的灯,从第一个人举起灯到他看到第二个人的灯的时间间隔就是光传播两英里的时间。但由于光速传播的速度实在是太快了,这种方法根本行不通。但伽利略的实验揭开了人类历史上对光速进行研究的序幕。
1676年,丹麦天文学家罗麦第一次提出了有效的光速测量方法。他在观测木星的卫星的隐食周期时发现:在一年的不同时期,它们的周期有所不同;在地球处于太阳和木星之间时的周期与太阳处于地球和木星之间时的周期相差十四五天。他认为这种现象是由于光具有速度造成的,而且他还推断出光跨越地球轨道所需要的时间是22分钟。1676年9月,罗麦预言预计11月9日上午5点25分45秒发生的木卫食将推迟10分钟。巴黎天文台的科学家们怀着将信将疑的态度,观测并最终证实了罗麦的预言。
罗麦的理论没有马上被法国科学院接受,但得到了著名科学家惠更斯的赞同。惠更斯根据他提出的数据和地球的半径第一次计算出了光的传播速度:214000千米/秒。虽然这个数值与目前测得的最精确的数据相差甚远,但他启发了惠更斯对波动说的研究;更重要的是这个结果的错误不在于方法的错误,只是源于罗麦对光跨越地球的时间的错误推测,现代用罗麦的方法经过各种校正后得出的结果是298000千米/秒,很接近于现代实验室所测定的精确数值。
1725年,英国天文学家布莱德雷发现了恒星的“光行差”现象,以意外的方式证实了罗麦的理论。刚开始时,他无法解释这一现象,直到1728年,他在坐船时受到风向与船航向的相对关系的启发,认识到光的传播速度与地球公转共同引起了“光行差”的现象。他用地球公转的速度与光速的比例估算出了太阳光到达地球需要8分13秒。这个数值较罗麦法测定的要精确一些。菜德雷测定值证明了罗麦有关光速有限性的说法。
光速的测定,成了十七世纪以来所展开的关于光的本性的争论的重要依据。但是,由于受当时实验环境的局限,科学家们只能以天文方法测定光在真空中的传播速度,还不能解决光受传播介质影响的问题,所以关于这一问题的争论始终悬而未决。
十八世纪,科学界是沉闷的,光学的发展几乎处于停滞的状态。继布莱德雷之后,经过一个多世纪的酝酿,到了十九世纪中期,才出现了新的科学家和新的方法来测量光速。
1849年,法国人菲索第一次在地面上设计实验装置来测定光速。他的方法原理与伽利略的相类似。他将一个点光源放在透镜的焦点处,在透镜与光源之间放一个齿轮,在透镜的另一测较远处依次放置另一个透镜和一个平面镜,平面镜位于第二个透镜的焦点处。点光源发出的光经过齿轮和透镜后变成平行光,平行光经过第二个透镜后又在平面镜上聚于一点,在平面镜上反射后按原路返回。由于齿轮有齿隙和齿,当光通过齿隙时观察者就可以看到返回的光,当光恰好遇到齿时就会被遮住。从开始到返回的光第一次消失的时间就是光往返一次所用的时间,根据齿轮的转速,这个时间不难求出。通过这种方法,菲索测得的光速是315000千米/秒。由于齿轮有一定的宽度,用这种方法很难精确的测出光速。
1850年,法国物理学家傅科改进了菲索的方法,他只用一个透镜、一面旋转的平面镜和一个凹面镜。平行光通过旋转的平面镜汇聚到凹面镜的圆心上,同样用平面镜的转速可以求出时间。傅科用这种方法测出的光速是298000 千米/秒。另外傅科还测出了光在水中的传播速度,通过与光在空气中传播速度的比较,他测出了光由空气中射入水中的折射率。这个实验在微粒说已被波动说推翻之后,又一次对微粒说做出了判决,给光的微粒理论带了最后的冲击。
1928年,卡娄拉斯和米太斯塔德首先提出利用克尔盒法来测定光速。1951年,贝奇斯传德用这种方法测出的光速是299793千米/秒。
光波是电磁波谱中的一小部分,当代人们对电磁波谱中的每一种电磁波都进行了精密的测量。1950年,艾森提出了用空腔共振法来测量光速。这种方法的原理是,微波通过空腔时当它的频率为某一值时发生共振。根据空腔的长度可以求出共振腔的波长,在把共振腔的波长换算成光在真空中的波长,由波长和频率可计算出光速。
当代计算出的最精确的光速都是通过波长和频率求得的。1958年,弗鲁姆求出光速的精确值:299792.5±0.1千米/秒。1972年,埃文森测得了目前真空中光速的最佳数值:299792457.4±0.1米/秒。
光速的测定在光学的研究历程中有着重要的意义。虽然从人们设法测量光速到人们测量出较为精确的光速共经历了三百多年的时间,但在这期间每一点进步都促进了几何光学和物理光学的发展,尤其是在微粒说与波动说的争论中,光速的测定曾给这一场著名的科学争辩提供了非常重要的依据
❺ 世界上最快的速度不是光速,科学家最新研究或许能颠覆认知,到底什么速度
目前人类可见的移动的物体速度最快,也莫过于目前的一些交通工具了,比如目前人类坐的高铁每小时可以运行很长一段距离,还有飞机也是一样,这些速度在人的认知当中已经算非常快的了,不过在物理学当中这些速度确实非常慢,那么最快的速度到底是有多快呢?
科学家目前也没有装备来观测宇宙膨胀的速度,只知道这种速度是目前最快的,目前宇宙还在不断的膨胀,而且美国天文学家也是提出了相关的理论,表示在球体之内的物体会不断的运行到球体的边缘,但是这个速度肯定比球的膨胀速度要慢,这也能解释宇宙目前的膨胀速度是比光速要快的,不过在球体之外的物体速度就没有办法控制了。
❻ “科学家认为光的传播速度是最快的”的依据是什么
光速的测量方法,和测量依据:
光速是指光波或电磁波在真空或介质中的传播速度。真空中的光速是目前所发现的自然界物体运动的最大速度。众所周知在真空中光的传播是的30万千米/秒。那么这么快的速度是怎么测量出来的呢?
光速的测定,经历了多个阶段,光速的测定值也越来越精确,以下做分别说明。
1、伽利略举灯间隔法
1849年,法国人菲索第一次在地面上设计实验装置来测定光速。他将一个点光源放在透镜的焦点处,在透镜与光源之间放一个齿轮,在透镜的另一测较远处依次放置另一个透镜和一个平面镜,平面镜位于第二个透镜的焦点处。点光源发出的光经过齿轮和透镜后变成平行光,平行光经过第二个透镜后又在平面镜上聚于一点,在平面镜上反射后按原路返回。由于齿轮有齿隙和齿,当光通过齿隙时观察者就可以看到返回的光,当光恰好遇到齿时就会被遮住。从开始到返回的光第一次消失的时间就是光往返一次所用的时间,根据齿轮的转速,这个时间不难求出。通过这种方法,菲索测得的光速是315000千米/秒。由于齿轮有一定的宽度,用这种方法很难精确的测出光速。
4、空腔共振法
光波是电磁波谱中的一小部分,当代人们对电磁波谱中的每一种电磁波都进行了精密的测量。1950年,艾森提出了用空腔共振法来测量光速。这种方法的原理是,微波通过空腔时当它的频率为某一值时发生共振。根据空腔的长度可以求出共振腔的波长,在把共振腔的波长换算成光在真空中的波长,由波长和频率可计算出光速。当代计算出的最精确的光速都是通过波长和频率求得的。1958年,弗鲁姆求出光速的精确值:299792.5±0.1千米/秒。1972年,埃文森测得了目前真空中光速的最佳数值:299792457.4±0.1米/秒。
5、激光测速法
1970年美国国家标准局和美国国立物理实验室最先运用激光测定光速,这个方法的原理是同时测定激光的波长和频率来确定光速(c=vλ),由于激光的频率和波长的测量精确度已大大提高,比以前已有最精密的实验方法提高精度约100倍。
除了以上介绍的几种测量光速的方法外,还有许多十分精确的测定光速的方法。
根据1975年第十五届国际计量大会的决议,现代真空中光速的准确值是:c=299792.458km/s。
❼ 光的速度是科学家认同的最快的速度,有多快
^光的速度是科学家认同的最快的速度,光在真空中的传播速度 c=3x10^专8m/s.
真空中的光速 3x10^8m/s,是自然界属物体运动的最大速度。光速与观测者相对于光源的运动速度无关。物体的质量将随着速度的增大而增大,当物体的速度接近光速时,它的动质量将趋于无穷大,所以质量不为0的物体达到光速是不可能的。只有静质量为零的光子,才始终以光速运动着。光速与任何速度叠加,得到的仍然是光速。真空中的光速是一个重要的物理常量。
❽ 科学家是怎样测定光的速度
科学家(用旋转镜和干涉仪)测定光的速度
迈克耳孙自己设计了旋转镜和干涉仪,用以测定微小的长度、折射率和光波波长。1879年,他得到的光速为299910±5千米/秒;1882年,他得到的光速为299853±6千米/秒。这个结果被公认为国际标准,沿用了40年。迈克耳孙最后一次测量光速在加利福尼亚两座相差35千米的山上进行的,光速测量精确度最后达到了299798±4千米/秒。