当前位置:首页 » 格式模板 » 自然语言处理摘要

自然语言处理摘要

发布时间: 2021-03-29 12:17:21

⑴ 数据标注在自然语言处理领域有哪些具体应用

应用太多了
比如情感分析,需要你标注这篇文章是褒义还是贬义
比如分词需要你标注这个词,这句话是怎么分的
比如做摘要,也需要你去标注正确的摘要,应该是哪个句子
还有翻译
等等等等,太多了

⑵ 自然语言处理与语音识别是什么关系

语音识别是自然语言处理的一项比较基础的分支范畴。很多情况下,你得先让机器知道你在说什么,才能进一步让机器去理解和做出特定的反应。其他分支范畴有机器翻译、搜索、摘要、问答等等。另外不知道你说的语音是不是还包括语音合成,这也属于自然语言处理,但是相对比语言识别简单多了,基本上是两码事吧。

⑶ 自然语言处理和文本挖掘的关系

自然语言处理和文本的这种挖掘关系就是语言处理情况,需要利用文本的筛选功能。
然后文本筛选出具体的语言精髓,使用于正常的文本。

⑷ 自然语言处理和语音的关系是什么,和机器学习又是什么关系

语音识别是自然语言处理的一项比较基础的分支范畴。很多情况下,你得先让机器知道你在说什么,才能进一步让机器去理解和做出特定的反应。其他分支范畴有机器翻译、搜索、摘要、问答等等。另外不知道你说的语音是不是还包括语音合成,这也属于自然语言处理,但是相对比语言识别简单多了,基本上是两码事吧。

机器学习和自然语言处理都属于人工智能方面的学科,不存在谁包含谁。机器学习是一种更加基础性的东西

⑸ 自然语言处理怎么最快入门

作者:刘知远
链接:http://www.hu.com/question/19895141/answer/24710071
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

昨天实验室一位刚进组的同学发邮件来问我如何查找学术论文,这让我想起自己刚读研究生时茫然四顾的情形:看着学长们高谈阔论领域动态,却不知如何入门。经过研究生几年的耳濡目染,现在终于能自信地知道去哪儿了解最新科研动态了。我想这可能是初学者们共通的困惑,与其只告诉一个人知道,不如将这些Folk Knowledge写下来,来减少更多人的麻烦吧。当然,这个总结不过是一家之谈,只盼有人能从中获得一点点益处,受个人认知所限,难免挂一漏万,还望大家海涵指正。

1. 国际学术组织、学术会议与学术论文
自然语言处理(natural language processing,NLP)在很大程度上与计算语言学(computational linguistics,CL)重合。与其他计算机学科类似,NLP/CL有一个属于自己的最权威的国际专业学会,叫做The Association for Computational Linguistics(ACL,URL:ACL Home Page),这个协会主办了NLP/CL领域最权威的国际会议,即ACL年会,ACL学会还会在北美和欧洲召开分年会,分别称为NAACL和EACL。除此之外,ACL学会下设多个特殊兴趣小组(special interest groups,SIGs),聚集了NLP/CL不同子领域的学者,性质类似一个大学校园的兴趣社团。其中比较有名的诸如SIGDAT(Linguistic data and corpus-based approaches to NLP)、SIGNLL(Natural Language Learning)等。这些SIGs也会召开一些国际学术会议,其中比较有名的就是SIGDAT组织的EMNLP(Conference on Empirical Methods on Natural Language Processing)和SIGNLL组织的CoNLL(Conference on Natural Language Learning)。此外还有一个International Committee on Computational Linguistics的老牌NLP/CL学术组织,它每两年组织一个称为International Conference on Computational Linguistics (COLING)的国际会议,也是NLP/CL的重要学术会议。NLP/CL的主要学术论文就分布在这些会议上。
作为NLP/CL领域的学者最大的幸福在于,ACL学会网站建立了称作ACL Anthology的页面(URL:ACL Anthology),支持该领域绝大部分国际学术会议论文的免费下载,甚至包含了其他组织主办的学术会议,例如COLING、IJCNLP等,并支持基于Google的全文检索功能,可谓一站在手,NLP论文我有。由于这个论文集合非常庞大,并且可以开放获取,很多学者也基于它开展研究,提供了更丰富的检索支持,具体入口可以参考ACL Anthology页面上方搜索框右侧的不同检索按钮。
与大部分计算机学科类似,由于技术发展迅速,NLP/CL领域更重视发表学术会议论文,原因是发表周期短,并可以通过会议进行交流。当然NLP/CL也有自己的旗舰学术期刊,发表过很多经典学术论文,那就是Computational Linguistics(URL:MIT Press Journals)。该期刊每期只有几篇文章,平均质量高于会议论文,时间允许的话值得及时追踪。此外,ACL学会为了提高学术影响力,也刚刚创办了Transactions of ACL(TACL,URL:Transactions of the Association for Computational Linguistics (ISSN: 2307-387X)),值得关注。值得一提的是这两份期刊也都是开放获取的。此外也有一些与NLP/CL有关的期刊,如ACM Transactions on Speech and Language Processing,ACM Transactions on Asian Language Information Processing,Journal of Quantitative Linguistics等等。
根据Google Scholar Metrics 2013年对NLP/CL学术期刊和会议的评价,ACL、EMNLP、NAACL、COLING、LREC、Computational Linguistics位于前5位,基本反映了本领域学者的关注程度。
NLP/CL作为交叉学科,其相关领域也值得关注。主要包括以下几个方面:(1)信息检索和数据挖掘领域。相关学术会议主要由美国计算机学会(ACM)主办,包括SIGIR、WWW、WSDM等;(2)人工智能领域。相关学术会议主要包括AAAI和IJCAI等,相关学术期刊主要包括Artificial Intelligence和Journal of AI Research;(3)机器学习领域,相关学术会议主要包括ICML,NIPS,AISTATS,UAI等,相关学术期刊主要包括Journal of Machine Learning Research(JMLR)和Machine Learning(ML)等。例如最近兴起的knowledge graph研究论文,就有相当一部分发表在人工智能和信息检索领域的会议和期刊上。实际上国内计算机学会(CCF)制定了“中国计算机学会推荐国际学术会议和期刊目录”(CCF推荐排名),通过这个列表,可以迅速了解每个领域的主要期刊与学术会议。
最后,值得一提的是,美国Hal Daumé III维护了一个natural language processing的博客(natural language processing blog),经常评论最新学术动态,值得关注。我经常看他关于ACL、NAACL等学术会议的参会感想和对论文的点评,很有启发。另外,ACL学会维护了一个Wiki页面(ACL Wiki),包含了大量NLP/CL的相关信息,如著名研究机构、历届会议录用率,等等,都是居家必备之良品,值得深挖。

2. 国内学术组织、学术会议与学术论文
与国际上相似,国内也有一个与NLP/CL相关的学会,叫做中国中文信息学会(URL:中国中文信息学会)。通过学会的理事名单(中国中文信息学会)基本可以了解国内从事NLP/CL的主要单位和学者。学会每年组织很多学术会议,例如全国计算语言学学术会议(CCL)、全国青年计算语言学研讨会(YCCL)、全国信息检索学术会议(CCIR)、全国机器翻译研讨会(CWMT),等等,是国内NLP/CL学者进行学术交流的重要平台。尤其值得一提的是,全国青年计算语言学研讨会是专门面向国内NLP/CL研究生的学术会议,从组织到审稿都由该领域研究生担任,非常有特色,也是NLP/CL同学们学术交流、快速成长的好去处。值得一提的是,2010年在北京召开的COLING以及2015年即将在北京召开的ACL,学会都是主要承办者,这也一定程度上反映了学会在国内NLP/CL领域的重要地位。此外,计算机学会中文信息技术专委会组织的自然语言处理与中文计算会议(NLP&CC)也是最近崛起的重要学术会议。中文信息学会主编了一份历史悠久的《中文信息学报》,是国内该领域的重要学术期刊,发表过很多篇重量级论文。此外,国内著名的《计算机学报》、《软件学报》等期刊上也经常有NLP/CL论文发表,值得关注。
过去几年,在水木社区BBS上开设的AI、NLP版面曾经是国内NLP/CL领域在线交流讨论的重要平台。这几年随着社会媒体的发展,越来越多学者转战新浪微博,有浓厚的交流氛围。如何找到这些学者呢,一个简单的方法就是在新浪微博搜索的“找人”功能中检索“自然语言处理”、 “计算语言学”、“信息检索”、“机器学习”等字样,马上就能跟过去只在论文中看到名字的老师同学们近距离交流了。还有一种办法,清华大学梁斌开发的“微博寻人”系统(清华大学信息检索组)可以检索每个领域的有影响力人士,因此也可以用来寻找NLP/CL领域的重要学者。值得一提的是,很多在国外任教的老师和求学的同学也活跃在新浪微博上,例如王威廉(Sina Visitor System)、李沐(Sina Visitor System)等,经常爆料业内新闻,值得关注。还有,国内NLP/CL的著名博客是52nlp(我爱自然语言处理),影响力比较大。总之,学术研究既需要苦练内功,也需要与人交流。所谓言者无意、听者有心,也许其他人的一句话就能点醒你苦思良久的问题。无疑,博客微博等提供了很好的交流平台,当然也注意不要沉迷哦。

3. 如何快速了解某个领域研究进展
最后简单说一下快速了解某领域研究进展的经验。你会发现,搜索引擎是查阅文献的重要工具,尤其是谷歌提供的Google Scholar,由于其庞大的索引量,将是我们披荆斩棘的利器。
当需要了解某个领域,如果能找到一篇该领域的最新研究综述,就省劲多了。最方便的方法还是在Google Scholar中搜索“领域名称 + survey / review / tutorial / 综述”来查找。也有一些出版社专门出版各领域的综述文章,例如NOW Publisher出版的Foundations and Trends系列,Morgan & Claypool Publisher出版的Synthesis Lectures on Human Language Technologies系列等。它们发表了很多热门方向的综述,如文档摘要、情感分析和意见挖掘、学习排序、语言模型等。
如果方向太新还没有相关综述,一般还可以查找该方向发表的最新论文,阅读它们的“相关工作”章节,顺着列出的参考文献,就基本能够了解相关研究脉络了。当然,还有很多其他办法,例如去http://videolectures.net上看著名学者在各大学术会议或暑期学校上做的tutorial报告,去直接咨询这个领域的研究者,等等。

⑹ 自然语言处理的发展历史

最早的自然语言理解方面的研究工作是机器翻译。1949年,美国人威弗首先提出了机器翻译设计方案。20世纪60年代,国外对机器翻译曾有大规模的研究工作,耗费了巨额费用,但人们当时显然是低估了自然语言的复杂性,语言处理的理论和技术均不成热,所以进展不大。主要的做法是存储两种语言的单词、短语对应译法的大辞典,翻译时一一对应,技术上只是调整语言的同条顺序。但日常生活中语言的翻译远不是如此简单,很多时候还要参考某句话前后的意思。
大约90年代开始,自然语言处理领域发生了巨大的变化。这种变化的两个明显的特征是:
(1)对系统输入,要求研制的自然语言处理系统能处理大规模的真实文本,而不是如以前的研究性系统那样,只能处理很少的词条和典型句子。只有这样,研制的系统才有真正的实用价值。
(2)对系统的输出,鉴于真实地理解自然语言是十分困难的,对系统并不要求能对自然语言文本进行深层的理解,但要能从中抽取有用的信息。例如,对自然语言文本进行自动地提取索引词,过滤,检索,自动提取重要信息,进行自动摘要等等。
同时,由于强调了“大规模”,强调了“真实文本”,下面两方面的基础性工作也得到了重视和加强。
(1)大规模真实语料库的研制。大规模的经过不同深度加工的真实文本的语料库,是研究自然语言统计性质的基础。没有它们,统计方法只能是无源之水。
(2)大规模、信息丰富的词典的编制工作。规模为几万,十几万,甚至几十万词,含有丰富的信息(如包含词的搭配信息)的计算机可用词典对自然语言处理的重要性是很明显的。

⑺ 什么自然语言处理

以下为自然语言所能够做到的。
1. 全文精准检索
支持文本、数字、日期、字符串等各种数据类型,多字段的高效搜索,支持AND/OR/NOT
以及NEAR 邻近等查询语法,支持维语、藏语、蒙语、阿拉伯、韩语等多种少数民族语
言的检索。可以无缝地与现有文本处理系统与数据库系统融合。
􀂄 2. 新词发现:
从文件集合中挖掘出内涵的新词语列表,可以用于用户专业词典的编撰;还可以进一
步编辑标注,导入分词词典中,从而提高分词系统的准确度,并适应新的语言变化。
􀂄 3. 分词标注:
对原始语料进行分词、自动识别人名地名机构名等未登录词、新词标注以及词性标注。
并可在分析过程中,导入用户定义的词典。
􀂄 4. 统计分析与术语翻译
针对切分标注结果,系统可以自动地进行一元词频统计、二元词语转移概率统计(统
计两个词左右连接的频次即概率)。针对常用的术语,会自动给出相应的英文解释。
􀂄 5. 文本聚类及热点分析
能够从大规模数据中自动分析出热点事件,并提供事件话题的关键特征描述。同时适
用于长文本和短信、微博等短文本的热点分析。
􀂄 6. 分类过滤
针对事先指定的规则和示例样本,系统自动从海量文档中筛选出符合需求的样本。
􀂄 7. 自动摘要
能够对单篇或多篇文章,自动提炼出内容的精华,方便用户快速浏览文本内容。
􀂄 8. 关键词提取
能够对单篇文章或文章集合,提取出若干个代表文章中心思想的词汇或短语,可用于
精化阅读、语义查询和快速匹配等。
􀂄 9. 文档去重
能够快速准确地判断文件集合或数据库中是否存在相同或相似内容的记录,同时找出
所有的重复记录。
􀂄 10. HTML 正文提取
自动剔除导航性质的网页,剔除网页中的HTML 标签和导航、广告等干扰性文字,返
回有价值的正文内容。适用于大规模互联网信息的预处理和分析。

⑻ python有哪些提取文本摘要的库

1.google goose

>>>fromgooseimportGoose
>>>url='http://edition.cnn.com/2012/02/22/world/europe/uk-occupy-london/index.html?hpt=ieu_c2'
>>>g=Goose()
>>>article=g.extract(url=url)
>>>article.title
u''
>>>article.meta_description
".Paul'yinadecisionmadebyLondon'sCourtofAppeal."
>>>article.cleaned_text[:150]
(CNN)--.Paul'
>>>article.top_image.src
http://i2.cdn.turner.com/cnn/dam/assets/111017024308-occupy-london-st-paul-s-cathedral-story-top.jpg

2. pythonSnowNLP

fromsnownlpimportSnowNLP

s=SnowNLP(u'这个东西真心很赞')

s.words#[u'这个',u'东西',u'真心',
#u'很',u'赞']

s.tags#[(u'这个',u'r'),(u'东西',u'n'),
#(u'真心',u'd'),(u'很',u'd'),
#(u'赞',u'Vg')]

s.sentiments#0.9769663402895832positive的概率

s.pinyin#[u'zhe',u'ge',u'dong',u'xi',
#u'zhen',u'xin',u'hen',u'zan']

s=SnowNLP(u'「繁体字」「繁体中文」的叫法在台湾亦很常见。')

s.han#u'「繁体字」「繁体中文」的叫法
#在台湾亦很常见。'

text=u'''
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。
它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。
自然语言处理是一门融语言学、计算机科学、数学于一体的科学。
因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,
所以它与语言学的研究有着密切的联系,但又有重要的区别。
自然语言处理并不是一般地研究自然语言,
而在于研制能有效地实现自然语言通信的计算机系统,
特别是其中的软件系统。因而它是计算机科学的一部分。
'''

s=SnowNLP(text)

s.keywords(3)#[u'语言',u'自然',u'计算机']

s.summary(3)#[u'因而它是计算机科学的一部分',
#u'自然语言处理是一门融语言学、计算机科学、
#数学于一体的科学',
#u'自然语言处理是计算机科学领域与人工智能
#领域中的一个重要方向']
s.sentences

s=SnowNLP([[u'这篇',u'文章'],
[u'那篇',u'论文'],
[u'这个']])
s.tf
s.idf
s.sim([u'文章'])#[0.3756070762985226,0,0]

3. pythonTextTeaser

#!/usr/bin/python
#-*-coding:utf-8-*-

#articlesource:https://blogs.dropbox.com/developers/2015/03/limitations-of-the-get-method-in-http/
title=""
text=",.Inthehopesthatithelpsothers,.Inthispost,we’ourownAPI.Asarule,..Forexample,abrowserdoesn’,,thebrowserknowsit’’sanetworkerror.ForformsthatuseHTTPPOST,.HTTP-’tmodifyserverstate.,theapp’.Thelibrarydoesn’.’tmodifyserverstate,butunfortunatelythisisn’talwayspossible.GETrequestsdon’thavearequestbody,.WhiletheHTTPstandarddoesn’,.Thisisrarelyaproblem,/deltaAPIcall.Thoughitdoesn’tmodifyserverstate,.Theproblemisthat,inHTTP,estbody.Wecouldhavesomehowcontorted/,,likeperformance,simplicity,anddeveloperergonomics.Intheend,wedecidedthebenefitsofmaking/deltamoreHTTP-likeweren’.case,soit’snosurprisethatitdoesn’tfiteveryAPIperfectly.Maybeweshouldn’tletHTTP’.Forexample,independentofHTTP,.Then,’tmodifyserverstateanddon’thavelargeparameters,.Thisway,we’."
tt=TextTeaser()
sentences=tt.summarize(title,text)
forsentenceinsentences:
printsentence

4. pythonsumy

#-*-coding:utf8-*-

from__future__importabsolute_import
from__future__importdivision,print_function,unicode_literals

fromsumy.parsers.htmlimportHtmlParser
fromsumy.parsers.
fromsumy.nlp.tokenizersimportTokenizer
fromsumy.summarizers.
fromsumy.nlp.stemmersimportStemmer
fromsumy.utilsimportget_stop_words


LANGUAGE="czech"
SENTENCES_COUNT=10


if__name__=="__main__":
url="http://www.zsstritezuct.estranky.cz/clanky/predmety/cteni/jak-naucit-dite-spravne-cist.html"
parser=HtmlParser.from_url(url,Tokenizer(LANGUAGE))
#orforplaintextfiles
#parser=PlaintextParser.from_file("document.txt",Tokenizer(LANGUAGE))
stemmer=Stemmer(LANGUAGE)

summarizer=Summarizer(stemmer)
summarizer.stop_words=get_stop_words(LANGUAGE)

forsentenceinsummarizer(parser.document,SENTENCES_COUNT):
print(sentence)

⑼ 快速了解什么是自然语言处理

摘要:

自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学等于一体的科学。因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所以它与语言学的研究有着密切的联系,但又有重要的区别。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统。因而它是计算机科学的一部分。

1 计算机对自然语言处理的过程

1.1把需要研究是问题在语言上建立形式化模型,使其可以数学形式表示出来,这个过程称之为"形式化"

1.2把数学模型表示为算法的过程称之为"算法化"

1.3根据算法,计算机进行实现,建立各种自然语言处理系统,这个过程是"程序化"

1.4对系统进行评测和改进最终满足现实需求,这个过程是"实用化"


2 自然语言处理涉及的知识领域

语言学、计算机科学(提供模型表示、算法设计、计算机实现)、数学(数学模型)、心理学(人类言语心理模型和理论)、哲学(提供人类思维和语言的更深层次理论)、统计学(提供样本数据的预测统计技术)、电子工程(信息论基础和语言信号处理技术)、生物学(人类言语行为机制理论)。故其为多边缘的交叉学科


3 自然语言处理涉及的范围

3.1语音的自动合成与识别、机器翻译、自然语言理解、人机对话、信息检索、文本分类、自动文摘等等,总之分为四大方向:

  • 语言学方向

  • 数据处理方向

  • 人工智能和认知科学方向

  • 语言工程方向


3.2也可细分为13个方面

  • 口语输入:语音识别、信号表示、鲁棒的语音识别、语音识别中的隐马尔科夫模型方法、语言模型、说话人识别、口语理解

  • 书面语输入:文献格式识别、光学字符识别(OCR):印刷体识别/手写体识别、手写界面、手写文字分析

  • 语言分析理解:小于句子单位的处理、语法的形式化、针对基于约束的语法编写的词表、计算语义学、句子建模和剖析技术、鲁棒的剖析技术

  • 语言生成:句法生成、深层生成

  • 口语输入技术:合成语音技术、语音合成的文本解释、口语生成

  • 话语分析与对话:对话建模、话语建模口语对话系统

  • 文献自动处理:文献检索、文本解释:信息抽取、文本内容自动归纳、文本写作和编辑的计算机支持、工业和企业中使用的受限语言

  • 多语问题的计算机处理:机器翻译、人助机译、机助人译、多语言信息检索、多语言语音识别、自动语种验证

  • 多模态的计算机处理:空间和时间表示方法、文本与图像处理、口语与手势的模态结合、口语与面部信息的模态结合:面部运动和语音识别

  • 信息传输和信息存储:语音压缩、语音品质的提升

  • 自然语言处理中的数学方法:统计建模和分类的数学理论、数字信号处理技术、剖析算法的数学基础研究、神经网络、有限状态分析技术、语音和语言处理中的最优化技术和搜索技术

  • 语言资源:书面语料库、口语语料库、机器词典与词网的建设、术语编撰和术语数据库、网络数据挖掘和信息提取

  • 自然语言处理系统的评测:面向任务的文本分析评测、机器翻译系统和翻译工具的评测、大覆盖面的自然语言剖析器的评测、语音识别:评估和评测、语音合成评测、系统的可用性和界面的评测、语音通信质量的评测、文字识别系统的评测


4自然语言处理的发展的几个特点

  • 基于句法-语义规则的理性主义方法受到质疑,随着语料库建设和语料库语言学 的崛起,大规模真实文本的处理成为自然语言处理的主要战略目标。

  • 自然语言处理中越来越多地使用机器自动学习的方法来获取语言知识。

  • 统计数学方法越来越受到重视。

  • 自然语言处理中越来越重视词汇的作用,出现了强烈的"词汇主义"的倾向。


最后,你了解了吗。

⑽ nlp的自然语言处理的主要范畴

文本朗读(Text to speech)/语音合成(Speech synthesis)
语音识别(Speech recognition)
中文自动分词(Chinese word segmentation)
词性标注(Part-of-speech tagging)
句法分析(Parsing)
自然语言生成(Natural language generation)
文本分类(Text categorization)
信息检索(Information retrieval)
信息抽取(Information extraction)
文字校对(Text-proofing)
问答系统(Question answering)
机器翻译(Machine translation)
自动摘要(Automatic summarization)
文字蕴涵(Textual entailment)

热点内容
涂鸦论文 发布:2021-03-31 13:04:48 浏览:698
手机数据库应用 发布:2021-03-31 13:04:28 浏览:353
版面217 发布:2021-03-31 13:04:18 浏览:587
知网不查的资源 发布:2021-03-31 13:03:43 浏览:713
基金赎回参考 发布:2021-03-31 13:02:08 浏览:489
悬疑故事范文 发布:2021-03-31 13:02:07 浏览:87
做简单的自我介绍范文 发布:2021-03-31 13:01:48 浏览:537
战略地图参考 发布:2021-03-31 13:01:09 浏览:463
收支模板 发布:2021-03-31 13:00:43 浏览:17
电气学术会议 发布:2021-03-31 13:00:32 浏览:731