当前位置:首页 » 发表方式 » 韦达说投稿

韦达说投稿

发布时间: 2021-03-28 15:40:45

『壹』 我看辅导书上面说韦达定理可以判断方程的根是正还是负,怎么判断啊

一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中, 设两个根为X1和X2 韦达定理:
则X1+X2= -b/a X1*X2=c/a
1.c/a >0,则X1和X2同号,都为正或负
若 -b/a >0则X1和X2为正
若 -b/a <0则X1和X2为负
2.c/a <0,则X1和X2异号,再根据题目条件判断吧。

用韦达定理判断方程的根:
若b^2-4ac>0 则方程有两个不相等的实数根
若b^2-4ac=0 则方程有两个相等的实数根
若b^2-4ac≥0则方程有实数根
若b^2-4ac<0 则方程没有实数解

『贰』 牛顿与万有引力定律的资料

牛顿第一定律为:一切物体总保持运速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.
牛顿第一定律又叫惯性定律.
牛顿第二定律为:物体的加速度跟作用力成正比,跟物体的质量成反比.
牛顿第三定律为:两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上.

经典物理学大师—牛顿

您好!这是注释区,是对正文中出现的一些词汇、人物、事件等进行简要说明的区域。

为了能更好的帮助人们阅读文章,我们会对正文中的相关内容用链接标注。点击这些链接,就会在本区域得到相应的注释。将鼠标指向正文中的图片,就可看到该图片的有关说明。

同时,我们也真诚的期望能得到您的帮助。如果您对正文中的某些内容有相应材料,或对部分内容有在科学性、准确性、通俗性、趣味性、易读性等方面的修订和充实意见,希望您能告诉给我们,以便使更多的人因您而受益!同时,您也能够得到本网站的股权。共同经营“我们”的大科普网。

如果您提供注释内容,请注意篇幅尽量控制在320字以内。

欢迎投稿给我们 >>>



我不知道在别人看来,我是什么样的人;但在我自己看来,我不过就象是一个在海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现。
——牛顿

少年牛顿

1643年1月4日,在英格兰林肯郡小镇沃尔索浦的一个自耕农家庭里,牛顿诞生了。牛顿是一个早产儿,出生时只有三磅重,接生婆和他的亲人都担心他能否活下来。谁也没有料到这个看起来微不足道的小东西会成为了一位震古烁今的科学巨人,并且竟活到了85岁的高龄。

牛顿出生前三个月父亲便去世了。在他两岁时,母亲改嫁给一个牧师,把牛顿留在外祖母身边抚养。11岁时,母亲的后夫去世,母亲带着和后夫所生的一子二女回到牛顿身边。牛顿自幼沉默寡言,性格倔强,这种习性可能来自它的家庭处境。

大约从五岁开始,牛顿被送到公立学校读书。少年时的牛顿并不是神童,他资质平常,成绩一般,但他喜欢读书,喜欢看一些介绍各种简单机械模型制作方法的读物,并从中受到启发,自己动手制作些奇奇怪怪的小玩意,如风车、木钟、折叠式提灯等等。

传说小牛顿把风车的机械原理摸透后,自己制造了一架磨坊的模型,他将老鼠绑在一架有轮子的踏车上,然后在轮子的前面放上一粒玉米,刚好那地方是老鼠可望不可及的位置。老鼠想吃玉米,就不断的跑动,于是轮子不停的转动;又一次他放风筝时,在绳子上悬挂着小灯,夜间村人看去惊疑是彗星出现;他还制造了一个小水钟。每天早晨,小水钟会自动滴水到他的脸上,催他起床。他还喜欢绘画、雕刻,尤其喜欢刻日晷,家里墙角、窗台上到处安放着他刻画的日晷,用以验看日影的移动。

牛顿12岁时进了离家不远的格兰瑟姆中学。牛顿的母亲原希望他成为一个农民,但牛顿本人却无意于此,而酷爱读书。随着年岁的增大,牛顿越发爱好读书,喜欢沉思,做科学小实验。他在格兰瑟姆中学读书时,曾经寄宿在一位药剂师家里,使他受到了化学试验的熏陶。

牛顿在中学时代学习成绩并不出众,只是爱好读书,对自然现象由好奇心,例如颜色、日影四季的移动,尤其是几何学、哥白尼的日心说等等。他还分门别类的记读书笔记,又喜欢别出心裁的作些小工具、小技巧、小发明、小试验。

当时英国社会渗透基督教新思想,牛顿家里有两位都以神父为职业的亲戚,这可能影响牛顿晚年的宗教生活。从这些平凡的环境和活动中,还看不出幼年的牛顿是个才能出众异于常人的儿童。

后来迫于生活,母亲让牛顿停学在家务农,赡养家庭。但牛顿一有机会便埋首书卷,以至经常忘了干活。每次,母亲叫他同佣人一道上市场,熟悉做交易的生意经时,他便恳求佣人一个人上街,自己则躲在树丛后看书。有一次,牛顿的舅父起了疑心,就跟踪牛顿上市镇去,发现他的外甥伸着腿,躺在草地上,正在聚精会神地钻研一个数学问题。牛顿的好学精神感动了舅父,于是舅父劝服了母亲让牛顿复学,并鼓励牛顿上大学读书。牛顿又重新回到了学校,如饥似渴地汲取着书本上的营养。

求学岁月

1661年,19岁的牛顿以减费生的身份进入剑桥大学三一学院,靠为学院做杂务的收入支付学费,1664年成为奖学金获得者,1665年获学士学位。

17世纪中叶,剑桥大学的教育制度还渗透着浓厚的中世纪经院哲学的气味,当牛顿进入剑桥时,哪里还在传授一些经院式课程,如逻辑、古文、语法、古代史、神学等等。两年后三一学院出现了新气象,卢卡斯创设了一个独辟蹊径的讲座,规定讲授自然科学知识,如地理、物理、天文和数学课程。

讲座的第一任教授伊萨克·巴罗是个博学的科学家。这位学者独具慧眼,看出了牛顿具有深邃的观察力、敏锐的理解力。于是将自己的数学知识,包括计算曲线图形面积的方法,全部传授给牛顿,并把牛顿引向了近代自然科学的研究领域。

在这段学习过程中,牛顿掌握了算术、三角,读了开普勒的《光学》,笛卡尔的《几何学》和《哲学原理》,伽利略的《两大世界体系的对话》,胡克的《显微图集》,还有皇家学会的历史和早期的哲学学报等。

牛顿在巴罗门下的这段时间,是他学习的关键时期。巴罗比牛顿大12岁,精于数学和光学,他对牛顿的才华极为赞赏,认为牛顿的数学才超过自己。后来,牛顿在回忆时说道:“巴罗博士当时讲授关于运动学的课程,也许正是这些课程促使我去研究这方面的问题。”

当时,牛顿在数学上很大程度是依靠自学。他学习了欧几里得的《几何原本》、笛卡儿的《几何学》、沃利斯的《无穷算术》、巴罗的《数学讲义》及韦达等许多数学家的著作。其中,对牛顿具有决定性影响的要数笛卡儿的《几何学》和沃利斯的《无穷算术》,它们将牛顿迅速引导到当时数学最前沿~解析几何与微积分。1664年,牛顿被选为巴罗的助手,第二年,剑桥大学评议会通过了授予牛顿大学学士学位的决定。

1665~1666年严重的鼠疫席卷了伦敦,剑桥离伦敦不远,为恐波及,学校因此而停课,牛顿于1665年6月离校返乡。

由于牛顿在剑桥受到数学和自然科学的熏陶和培养,对探索自然现象产生浓厚的兴趣,家乡安静的环境又使得他的思想展翅飞翔。1665~1666年这段短暂的时光成为牛顿科学生涯中的黄金岁月,他在自然科学领域内思潮奔腾,才华迸发,思考前人从未思考过的问题,踏进了前人没有涉及的领域,创建了前所未有的惊人业绩。

1665年初,牛顿创立级数近似法,以及把任意幂的二项式化为一个级数的规则;同年11月,创立正流数法(微分);次年1月,用三棱镜研究颜色理论;5月,开始研究反流数法(积分)。这一年内,牛顿开始想到研究重力问题,并想把重力理论推广到月球的运动轨道上去。他还从开普勒定律中推导出使行星保持在它们的轨道上的力必定与它们到旋转中心的距离平方成反比。牛顿见苹果落地而悟出地球引力的传说,说的也是此时发生的轶事。

总之,在家乡居住的两年中,牛顿以比此后任何时候更为旺盛的精力从事科学创造,并关心自然哲学问题。他的三大成就:微积分、万有引力、光学分析的思想都是在这时孕育成形的。可以说此时的牛顿已经开始着手描绘他一生大多数科学创造的蓝图。

1667年复活节后不久,牛顿返回到剑桥大学,10月1日被选为三一学院的仲院侣(初级院委),翌年3月16日获得硕士学位,同时成为正院侣(高级院委)。1669年10月27日,巴罗为了提携牛顿而辞去了教授之职,26岁的牛顿晋升为数学教授,并担任卢卡斯讲座的教授。巴罗为牛顿的科学生涯打通了道路,如果没有牛顿的舅父和巴罗的帮助,牛顿这匹千里马可能就不会驰骋在科学的大道上。巴罗让贤,这在科学史上一直被传为佳话。

伟大的成就~建立微积分

在牛顿的全部科学贡献中,数学成就占有突出的地位。他数学生涯中的第一项创造性成果就是发现了二项式定理。据牛顿本人回忆,他是在1664年和1665年间的冬天,在研读沃利斯博士的《无穷算术》时,试图修改他的求圆面积的级数时发现这一定理的。

笛卡尔的解析几何把描述运动的函数关系和几何曲线相对应。牛顿在老师巴罗的指导下,在钻研笛卡尔的解析几何的基础上,找到了新的出路。可以把任意时刻的速度看是在微小的时间范围里的速度的平均值,这就是一个微小的路程和时间间隔的比值,当这个微小的时间间隔缩小到无穷小的时候,就是这一点的准确值。这就是微分的概念。

求微分相当于求时间和路程关系得在某点的切线斜率。一个变速的运动物体在一定时间范围里走过的路程,可以看作是在微小时间间隔里所走路程的和,这就是积分的概念。求积分相当于求时间和速度关系的曲线下面的面积。牛顿从这些基本概念出发,建立了微积分。

微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的努力加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。

牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。

在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。

应该说,一门科学的创立决不是某一个人的业绩,它必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样,是牛顿和莱布尼茨在前人的基础上各自独立的建立起来的。

1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如,他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。

牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。

伟大的成就~对光学的三大贡献

在牛顿以前,墨子、培根、达·芬奇等人都研究过光学现象。反射定律是人们很早就认识的光学定律之一。近代科学兴起的时候,伽利略靠望远镜发现了“新宇宙”,震惊了世界。荷兰数学家斯涅尔首先发现了光的折射定律。笛卡尔提出了光的微粒说……

牛顿以及跟他差不多同时代的胡克、惠更斯等人,也象伽利略、笛卡尔等前辈一样,用极大的兴趣和热情对光学进行研究。1666年,牛顿在家休假期间,得到了三棱镜,他用来进行了著名的色散试验。一束太阳光通过三棱镜后,分解成几种颜色的光谱带,牛顿再用一块带狭缝的挡板把其他颜色的光挡住,只让一种颜色的光在通过第二个三棱镜,结果出来的只是同样颜色的光。这样,他就发现了白光是由各种不同颜色的光组成的,这是第一大贡献。

牛顿为了验证这个发现,设法把几种不同的单色光合成白光,并且计算出不同颜色光的折射率,精确地说明了色散现象。揭开了物质的颜色之谜,原来物质的色彩是不同颜色的光在物体上有不同的反射率和折射率造成的。公元1672年,牛顿把自己的研究成果发表在《皇家学会哲学杂志》上,这是他第一次公开发表的论文

许多人研究光学是为了改进折射望远镜。牛顿由于发现了白光的组成,认为折射望远镜透镜的色散现象是无法消除的(后来有人用具有不同折射率的玻璃组成的透镜消除了色散现象),就设计和制造了反射望远镜。

牛顿不但擅长数学计算,而且能够自己动手制造各种试验设备并且作精细实验。为了制造望远镜,他自己设计了研磨抛光机,实验各种研磨材料。公元1668年,他制成了第一架反射望远镜样机,这是第二大贡献。公元1671年,牛顿把经过改进得反射望远镜献给了皇家学会,牛顿名声大震,并被选为皇家学会会员。反射望远镜的发明奠定了现代大型光学天文望远镜的基础。

同时,牛顿还进行了大量的观察实验和数学计算,比如研究惠更斯发现的冰川石的异常折射现象,胡克发现的肥皂泡的色彩现象,“牛顿环”的光学现象等等。

牛顿还提出了光的“微粒说”,认为光是由微粒形成的,并且走的是最快速的直线运动路径。他的“微粒说”与后来惠更斯的“波动说”构成了关于光的两大基本理论。此外,他还制作了牛顿色盘等多种光学仪器。

伟大的成就~构筑力学大厦

牛顿是经典力学理论的集大成者。他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了著名的万有引力定律和牛顿运动三定律。

在牛顿以前,天文学是最显赫的学科。但是为什么行星一定按照一定规律围绕太阳运行?天文学家无法圆满解释这个问题。万有引力的发现说明,天上星体运动和地面上物体运动都受到同样的规律——力学规律的支配。

早在牛顿发现万有引力定律以前,已经有许多科学家严肃认真的考虑过这个问题。比如开普勒就认识到,要维持行星沿椭圆轨道运动必定有一种力在起作用,他认为这种力类似磁力,就像磁石吸铁一样。1659年,惠更斯从研究摆的运动中发现,保持物体沿圆周轨道运动需要一种向心力。胡克等人认为是引力,并且试图推到引力和距离的关系。

1664年,胡克发现彗星靠近太阳时轨道弯曲是因为太阳引力作用的结果;1673年,惠更斯推导出向心力定律;1679年,胡克和哈雷从向心力定律和开普勒第三定律,推导出维持行星运动的万有引力和距离的平方成反比。

牛顿自己回忆,1666年前后,他在老家居住的时候已经考虑过万有引力的问题。最有名的一个说法是:在假期里,牛顿常常在花园里小坐片刻。有一次,象以往屡次发生的那样,一个苹果从树上掉了下来……

一个苹果的偶然落地,却是人类思想史的一个转折点,它使那个坐在花园里的人的头脑开了窍,引起他的沉思:究竟是什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着。终于,他发现了对人类具有划时代意义的万有引力。

牛顿高明的地方就在于他解决了胡克等人没有能够解决的数学论证问题。1679年,胡克曾经写信问牛顿,能不能根据向心力定律和引力同距离的平方成反比的定律,来证明行星沿椭圆轨道运动。牛顿没有回答这个问题。1685年,哈雷登门拜访牛顿时,牛顿已经发现了万有引力定律:两个物体之间有引力,引力和距离的平方成反比,和两个物体质量的乘积成正比。

当时已经有了地球半径、日地距离等精确的数据可以供计算使用。牛顿向哈雷证明地球的引力是使月亮围绕地球运动的向心力,也证明了在太阳引力作用下,行星运动符合开普勒运动三定律。

在哈雷的敦促下,1686年底,牛顿写成划时代的伟大著作《自然哲学的数学原理》一书。皇家学会经费不足,出不了这本书,后来靠了哈雷的资助,这部科学史上最伟大的著作之一才能够在1687年出版。

牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。

站在巨人的肩上

牛顿的研究领域非常广泛,他除了在数学、光学、力学等方面做出卓越贡献外,他还花费大量精力进行化学实验。他常常六个星期一直留在实验室里,不分昼夜的工作。他在化学上花费的时间并不少,却几乎没有取得什么显著的成就。为什么同样一个伟大的牛顿,在不同的领域取得的成就竟那么不一样呢?

其中一个原因就是各个学科处在不同的发展阶段。在力学和天文学方面,有伽利略、开普勒、胡克、惠更斯等人的努力,牛顿有可能用已经准备好的材料,建立起一座宏伟壮丽的力学大厦。正象他自己所说的那样“如果说我看得远,那是因为我站在巨人的肩上”。而在化学方面,因为正确的道路还没有开辟出来,牛顿没法走到可以砍伐材料的地方。

牛顿在临终前对自己的生活道路是这样总结的:“我不知道在别人看来,我是什么样的人;但在我自己看来,我不过就象是一个在海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现。”

这当然是牛顿的谦逊。

怪异的牛顿

牛顿并不善于教学,他在讲授新近发现的微积分时,学生都接受不了。但在解决疑难问题方面的能力,他却远远超过了常人。还是学生时,牛顿就发现了一种计算无限量的方法。他用这个秘密的方法,算出了双曲面积到二百五十位数。他曾经高价买下了一个棱镜,并把它作为科学研究的工具,用它试验了白光分解为的有颜色的光。

开始,他并不愿意发表他的观察所得,他的发现都只是一种个人的消遣,为的是使自己在寂静的书斋中解闷,他独自遨游于自己所创造的超级世界里。后来,在好友哈雷的竭力劝说下,才勉强同意出版他的手稿,才有划时代巨著《自然哲学的数学原理》的问世。

作为大学教授,牛顿常常忙得不修边幅,往往领带不结,袜带不系好,马裤也不纽扣,就走进了大学餐厅。有一次,他在向一位姑娘求婚时思想又开了小差,他脑海了只剩下了无穷量的二项式定理。他抓住姑娘的手指,错误的把它当成通烟斗的通条,硬往烟斗里塞,痛得姑娘大叫,离他而去。牛顿也因此终生未娶。

牛顿从容不迫地观察日常生活中的小事,结果作出了科学史上一个个重要的发现。他马虎拖沓,曾经闹过许多的笑话。一次,他边读书,边煮鸡蛋,等他揭开锅想吃鸡蛋时,却发现锅里是一只怀表。还有一次,他请朋友吃饭,当饭菜准备好时,牛顿突然想到一个问题,便独自进了内室,朋友等了他好久还是不见他出来,于是朋友就自己动手把那份鸡全吃了,鸡骨头留在盘子,不告而别了。等牛顿想起,出来后,发现了盘子里的骨头,以为自己已经吃过了,便转身又进了内室,继续研究他的问题。

牛顿晚年

但是由于受时代的限制,牛顿基本上是一个形而上学的机械唯物主义者。他认为运动只是机械力学的运动,是空间位置的变化;宇宙和太阳一样是没有发展变化的;靠了万有引力的作用,恒星永远在一个固定不变的位置上……

随着科学声誉的提高,牛顿的政治地位也得到了提升。1689年,他被当选为国会中的大学代表。作为国会议员,牛顿逐渐开始疏远给他带来巨大成就的科学。他不时表示出对以他为代表的领域的厌恶。同时,他的大量的时间花费在了和同时代的著名科学家如胡克、莱布尼兹等进行科学优先权的争论上。

晚年的牛顿在伦敦过着堂皇的生活,1705年他被安妮女王封为贵族。此时的牛顿非常富有,被普遍认为是生存着的最伟大的科学家。他担任英国皇家学会会长,在他任职的二十四年时间里,他以铁拳统治着学会。没有他的同意,任何人都不能被选举。

晚年的牛顿开始致力于对神学的研究,他否定哲学的指导作用,虔诚地相信上帝,埋头于写以神学为题材的著作。当他遇到难以解释的天体运动时,竟提出了“神的第一推动力”的谬论。他说“上帝统治万物,我们是他的仆人而敬畏他、崇拜他”。

1727年3月20日,伟大艾萨克·牛顿逝世。同其他很多杰出的英国人一样,他被埋葬在了威斯敏斯特教堂。他的墓碑上镌刻着:

让人们欢呼这样一位多么伟大的
人类荣耀曾经在世界上存在。

『叁』 关于数学的名言有哪些

数学是无穷的科学. ——赫尔曼外尔

数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 数学是科学之王. ——高斯

在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. ——康扥尔

只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡.

——希尔伯特

在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么.

——毕达哥拉斯

一门科学,只有当它成功地运用数学时,才能达到真正完善的地步.

——马克思

一个国家的科学水平可以用它消耗的数学来度量.

——拉奥
华罗庚说:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。”

冯纽曼说:“数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。”

皮娄(加拿大生物学家)说:“生态学本质上是一门数学”

开普勒说:“数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的”

傅立叶说:“数学主要的目标是公众的利益和自然现象的解释”

罗巴切夫斯基说:“不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上”

莱布尼兹说:“用一,从无,可生万物”

亚里士多德说:“思维自疑问和惊奇开始”

努瓦列斯说:“数学家本质上是个着迷者,不迷就没有数学”

柯普宁(前苏联哲学家)说:“当数学家导出方程式和公式,如同看到雕像、美丽的风景,听到优美的曲调等等一样而得到充分的快乐”

罗素说:“在数学中最令我欣喜的,是那些能够被证明的东西”

高斯说:“给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登”

波利亚说:“从最简单的做起”

高斯说:“宁可少些,但要好些”“二分之一个证明等于0”

希尔伯特说:“当我听别人讲解某些数学问题时,常觉得很难理解,甚至不可能理解。这时便想,是否可以将问题化简些呢﹖往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。”
广中平佑(日本得菲尔兹奖数学家)说:“在数学里,分辨何是重要,何事不重要,知所选择是很重要的”

华罗庚说:“下棋要找高手…。。只有不怕在能者面前暴露自己的弱点,才能不断进步”“自学,不怕起点低,就怕不到底”

牛顿说:“如果我能够看的更远,那是因为我站在巨人的肩上”

“我的成功归功于精细的思考,只有不断地思考,才能到达发现的彼岸”

牛顿说:“每一个目标,我都要它停留在我的眼前,从第一到曙光初现开始,一直保留,慢慢展开,直到整个大地光明为止”

爱因斯坦说:“每当我的头脑没有问题思考时,我就喜欢将已经知道的定理重新验证一番。这样做并没有什么目的,只是让自己有个机会充分享受一下专心思考的愉快”

华罗庚说:“数缺形时少直观,形缺数时难入微”又说“要打好数学基础有两个必经过程:先学习、接受“由薄到厚”;再消化、提炼“由厚到薄””

苏步青(大陆数学家)说:“学习数学要多做习题,边做边思索。先知其然,然后知其所以然”

拉码努扬(印度的数学国宝)说:“天才?请你看看我的臂肘吧”

卡拉吉奥多里(希腊函数论数学家)说:“学数学,绝不会有过份的努力”

爱因斯坦说:“圆圈的里面代表我现在学到的知识,圆圈的外面仍然有着无限的空白,而且随着圆愈来愈大,圆周所接触的空白也愈来愈大”。“在天才与勤奋之间,我毫不迟疑的选择了勤奋,因为它是世间一切成就的催生者”。“我反复思索好几个月,好几年;有九十九次都是错的,而第一百次我对了”

牛顿说:“我并无过人的智能,有的只是坚持不屑的思索精力而已。今天尽你最大的努力去做好,明天也许能做的更好”

韦达说(代数学之父):“没有不能解决的问题”

『肆』 为什么有人说韦达定理有些问题,现在我们考试都不让用了

你最好能知道,这个有用。即使不让用,有时坐小题也用得上,方便简洁。

『伍』 三年级下册数学名人名言

  1. 为中华之崛起而读书。

    ——周恩来

  2. 人生的价值,应当看他贡献什么,而不应该看他取得什么。

    ——爱因斯坦

  3. 我的成功归功于精细的思考,只有不断地思考,才能到达发现的彼岸。

  4. 韦达说(代数学之父):“没有不能解决的问题”

  5. 陈省身说:“早晨醒来,想的第一件事就是数学。我的生活就是数学;终生不倦地追求就是数学,数十年如一日,从没有懈怠过,现在依然如此。”又说“用功不是指每天在房里看书,也不是光做习题,而是要经常想数学。一天至少有七、八个小时在思考数学。

  6. 对真理和知识的追求并为之奋斗,是人的最高品质之一。——爱因斯坦

『陆』 有关数学的名人名言

陈省身

数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。

科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。

数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注於自己的研究。

我们欣赏数学,我们需要数学。

一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对於已知材料的了解,和推广范围。
祖冲之

(429-500)

迟序之数,非出神怪,有形可检,有数可推。

刘徽

事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图
,庶亦约而能周,通而不黩,览之者思过半矣。

“我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”
----王菊珍
“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。” ----华罗庚
“一个做学问的人, 除了学习知识外, 还要有“tast”, 这个词不太好翻译, 有的译成品味, 喜爱。 一个人要有大的成就, 就要有相当清楚的“tast”。 ”----杨振宁
“数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。”----陈省身

“科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。”
---陈省身
“数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。”
----陈省身
“我们欣赏数学,我们需要数学。”----陈省身

“一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。”
----陈省身
“新的数学方法和概念,常常比解决数学问题本身更重要”——华罗庚
“现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量”——邱成桐
“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。”——华罗庚

这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。 ――A.N.怀特海

我曾听到有人说我是数学的反对者,是数学的敌人,但没有人比我更尊重数学,因为它完成了我不曾得到其成就的业绩。 ――哥德

数学的本质在于它的自由。 ――康托尔

在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。 ――康托尔

没有任何问题可以像无穷那样深深地触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其它的概念能像无穷那样需要加以阐明。 ――希尔伯特

数统治着宇宙。 ――毕达哥拉斯

数学,科学的皇后;算术,数学的皇后。 ――高斯

数学是无穷的科学。 ――赫尔曼外尔

问题是数学的心脏。 ――P.R.Halmos

只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡。 ――希尔伯特

数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。 ――高斯

数学家就像恋人……给予一个数学家最少的原理,他将从中得出一个你必须认可的结论,从这个结论他又会得出另一个结论。 ――丰泰内利

(算术)是人类知识最古老,也许是最最古老的一个分支;然而它的一些最深奥的秘密与其最平凡的真理是密切相连的。 ――H.J.S.史密斯

也许听起来奇怪,数学的力量在于它规避了一切不必要的思考和它惊人地节省了脑力劳动。 ――恩斯特·马赫

但是数学享有盛誉还有另一个原因:正是数学给了各种精密自然科学一定程度的可靠性,没有数学,它们不可能获得这样的可靠性。――艾伯特·爱因斯坦

数学是特别适于处理任何种类的抽象概念的工具,在这个领域中它的力量是没有限度的。由于这个原因,一本关于新兴物理的书,只要不是纯粹描述实验的,实质上就必然是数学书。 ――P.A.M.狄拉克

为了创造一种健康的哲学,你应该抛弃形而上学,但要成为一个好数学家。

――伯特兰·罗素

发现的每一个新的群体在形式上都是数学的,因为我们不可能有其它的指导。 ――C.G.达尔文

上帝乃几何学家。 ――柏拉图

上帝乃算术学家。 ――C.G.J.雅可比

数学是最精密的科学,它的全部结论都能绝对地证明。但所以会如此只是因为数学并不试图得出绝对的结论。所有的数学真理都是相对的、有条件的。

――夏尔斯·普罗托伊斯·斯泰因梅茨

数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。 ――笛卡尔

数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。 ――冯纽曼

感觉到数学的美,感觉到数与形的协调,感觉到几何的优雅,这是所有真正的数学家都清楚的真实的美的感觉。 — —庞加莱

『柒』 5次方程韦达定理

所有高次都能用,但是后面比较复杂
比如说3次方
ax^3+bx^2+cx+d=0
假设根为m,n,o
m+n+o=-a/b
mn+no+mo=a/c
mno=-a/d
其他高次都一样
中间那个是两根乘积的和
随着次方增加,还有3根成绩之和,等等
然后a b c d的那个 是一正一负的

『捌』 牛顿人物述评

他一生未婚,见不得女人。和莱布尼茨共同创立了微积分。但是分别创立的,而且在当时还引起了很大的争端。同时他也是一个小提琴手,平时的休息就是拉小提琴。这一点和爱因斯坦很象。他对流体运动学的供献也很大。

『玖』 数学名言

数学是一种精神,一种理性的精神。正是这种精神,激发、促进、鼓舞并驱使人类的思维得以运用到最完善的程度,亦正是这种精神,试图决定性地影响人类的物质、道德和社会生活;试图回答有关人类自身存在提出的问题;努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。——克莱因《西方文化中的数学》
数学是除了语言与音乐之外,人类心灵自由创造力的主要表达方式之一,而且数学是经由理论的建构成为了解宇宙万物的媒介。因此,数学必需保持为知识,技能与文化的主要构成要素,而知识与技能是得传授给下一代,文化则得传承给下一代的。——录自德国数学家HermannWeyl语
数学是科学的皇后,而数论是数学的皇后高斯(Gauss)音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。——克莱因
数学的本质在於它的自由。---康扥尔(Cantor)
在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。康扥尔(Cantor)
没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明。——希尔伯特(Hilbert)
数学是无穷的科学。--赫尔曼外尔
问题是数学的心脏。--P.R.Halmos
只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡。--Hilbert
数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。---高斯
哲学家也要学数学,因为他必须跳出浩如烟海的万变现象而抓住真正的实质。……又因为这是使灵魂过渡到真理和永存的捷径。---柏拉图
高斯(数学王子)说:“数学是科学之王”
罗素说:“数学是符号加逻辑”
毕达哥拉斯说:“数支配着宇宙”
哈尔莫斯说:“数学是一种别具匠心的艺术”
米斯拉说:“数学是人类的思考中最高的成就”
培根(英国哲学家)说:“数学是打开科学大门的钥匙”
布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”
黑格尔说:“数学是上帝描述自然的符号”
魏尔德(美国数学学会主席)说:“数学是一种会不断进化的文化”
柏拉图说:“数学是一切知识中的最高形式”
考特说:“数学是人类智慧皇冠上最灿烂的明珠”
笛卡儿说:“数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。”
恩格斯(自然辩证法哲学家)说:“数学是研究现实生活中数量关系和空间形式的数学
克莱因(美国数学家)说:“数学是一种理性的精神,使人类的思维得以运用到最完善的程度”
伽利略说:“给我空间、时间、及对数,我可以创造一个宇宙”“自然界的书是用数学的语言写成的”牛顿说:“没有大胆的猜想,就做不出伟大的发现”,哈尔莫斯说:“数学的创作绝不是单靠推论可以得到的,首先通常是一些模糊的猜测,揣摩着可能的推广,接着下了不十分有把握的结论。然后整理想法,直到看出事实的端倪,往往还要费好大的劲儿,才能将一切付诸逻辑式的证明。这过程并不是一蹴可几的,要经过许多失败、挫折,一再地猜测、揣摹,在试探中白花掉几个月的时间是常有的。”
拉普拉斯说:“在数学中,我们发现真理的主要工具是归纳和模拟”
维特根斯坦说:“数学是各式各样的证明技巧”
华罗庚说:“新的数学方法和概念,常常比解决数学问题本身更重要”
纳皮尔说:“我总是尽我的精力和才能来摆脱那种繁重而单调的计算”
开普勒说:“以我一生最好的时光追寻那个目标……书已经写成了。现代人读或后代读都无关紧要,也许要等一百年才有一个读者”
拿破仑说:“一个国家只有数学蓬勃的发展,才能展现它国立的强大。数学的发展和至善和国家繁荣昌盛密切相关”
爱因斯坦说:“数学之所以比一切其它科学受到尊重,一个理由是因为他的命题是绝对可靠和无可争辩的,而其它的科学经常处于被新发现的事实推翻的危险。…。数学之所以有高声誉,另一个理由就是数学使得自然科学实现定理化,给予自然科学某种程度的可靠性。”
邱成桐说:“现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量”
伦琴说:“第一是数学,第二是数学,第三是数学”
华罗庚说:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。”
冯纽曼说:“数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。”
皮娄(加拿大生物学家)说:“生态学本质上是一门数学”
开普勒说:“数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的”
傅立叶说:“数学主要的目标是公众的利益和自然现象的解释”
罗巴切夫斯基说:“不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上”
莱布尼兹说:“用一,从无,可生万物”
亚里士多德说:“思维自疑问和惊奇开始”
努瓦列斯说:“数学家本质上是个着迷者,不迷就没有数学”
柯普宁(前苏联哲学家)说:“当数学家导出方程式和公式,如同看到雕像、美丽的风景,听到优美的曲调等等一样而得到充分的快乐”
罗素说:“在数学中最令我欣喜的,是那些能够被证明的东西”
高斯说:“给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登”
波利亚说:“从最简单的做起”
高斯说:“宁可少些,但要好些”“二分之一个证明等于0”
希尔伯特说:“当我听别人讲解某些数学问题时,常觉得很难理解,甚至不可能理解。这时便想,是否可以将问题化简些呢﹖往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。”
广中平佑(日本得菲尔兹奖数学家)说:“在数学里,分辨何是重要,何事不重要,知所选择是很重要的”
华罗庚说:“下棋要找高手…。。只有不怕在能者面前暴露自己的弱点,才能不断进步”“自学,不怕起点低,就怕不到底”
牛顿说:“如果我能够看的更远,那是因为我站在巨人的肩上”
“我的成功归功于精细的思考,只有不断地思考,才能到达发现的彼岸”
牛顿说:“每一个目标,我都要它停留在我的眼前,从第一到曙光初现开始,一直保留,慢慢展开,直到整个大地光明为止”
爱因斯坦说:“每当我的头脑没有问题思考时,我就喜欢将已经知道的定理重新验证一番。这样做并没有什么目的,只是让自己有个机会充分享受一下专心思考的愉快”
华罗庚说:“数缺形时少直观,形缺数时难入微”又说“要打好数学基础有两个必经过程:先学习、接受“由薄到厚”;再消化、提炼“由厚到薄””
苏步青(大陆数学家)说:“学习数学要多做习题,边做边思索。先知其然,然后知其所以然”
拉码努扬(印度的数学国宝)说:“天才?请你看看我的臂肘吧”
卡拉吉奥多里(希腊函数论数学家)说:“学数学,绝不会有过份的努力”
爱因斯坦说:“圆圈的里面代表我现在学到的知识,圆圈的外面仍然有着无限的空白,而且随着圆愈来愈大,圆周所接触的空白也愈来愈大”。“在天才与勤奋之间,我毫不迟疑的选择了勤奋,因为它是世间一切成就的催生者”。“我反复思索好几个月,好几年;有九十九次都是错的,而第一百次我对了”
牛顿说:“我并无过人的智能,有的只是坚持不屑的思索精力而已。今天尽你最大的努力去做好,明天也许能做的更好”
韦达说(代数学之父):“没有不能解决的问题”
陈省身说:“早晨醒来,想的第一件事就是数学。我的生活就是数学;终生不倦地追求就是数学,数十年如一日,从没有懈怠过,现在依然如此。”又说“用功不是指每天在房里看书,也不是光做习题,而是要经常想数学。一天至少有七、八个小时在思考数学。”
厄多斯说:“坟墓里有的时间去休息”
保罗。朗之万(法数学家)说:“在数学教学中,加入历史是有百利而无一弊的”
牛顿说:“一个例子比十个定理有效”
康多塞说:“尤拉讲课时喜欢给学生寻点开心,让学生感到惊异”
黄武雄说(台大教授):“导引定义,经常可以从反例着手”
魏尔斯特拉斯说:“如果不在某种程度上成为一个诗人,就永远不会成为一个完美的数学老师”
欧几里德说:“浮光掠影的东西终就会过去,但是天体图案却是巍然不动永世长存的”,华罗庚说:“最大的希望是工作到生命的最后一刻”,对这些把一辈子完全投入数学的数学家们,即使当他们走到人生旅程的最后一点,他们是否仍坚持当初的愿望呢﹖
阿贝尔说:“我要活下去!我还有许多工作没有做完…。。”
挪威数学家阿贝尔17岁便开始解五次方程式,22岁成为证明了五次方程没有公式解的第一人,在椭圆函数论有出色的表现,27岁与世长辞。他是多么想活下去,想多解决一些数学上的难题。
柯西说:“人总是要死的。但是,他们的业绩永存”。
波利亚说:“我的数学兴趣还没完。”

热点内容
涂鸦论文 发布:2021-03-31 13:04:48 浏览:698
手机数据库应用 发布:2021-03-31 13:04:28 浏览:353
版面217 发布:2021-03-31 13:04:18 浏览:587
知网不查的资源 发布:2021-03-31 13:03:43 浏览:713
基金赎回参考 发布:2021-03-31 13:02:08 浏览:489
悬疑故事范文 发布:2021-03-31 13:02:07 浏览:87
做简单的自我介绍范文 发布:2021-03-31 13:01:48 浏览:537
战略地图参考 发布:2021-03-31 13:01:09 浏览:463
收支模板 发布:2021-03-31 13:00:43 浏览:17
电气学术会议 发布:2021-03-31 13:00:32 浏览:731