地下水动态及其预测科学出版社
1. 什么是地下水动态监测
为满足水文地质分析计算、地下水规划、地下水预测预报以及其他工农业生产部门的需要,对地下水动态要素(水位、水量、水温和化学成分等)的历史动态及当前的状况所做的野外勘查和试验,并向有关部门搜集地下水动态要素资料的工作。
2. 矿坑及地下工程涌水量预测
矿坑(井)及地下工程涌水量是指从矿山开拓(或地下工程施工)到回采过程(或地下工程使用过程)中,单位时间内流入矿坑(或地下工程)的水量。它是评价矿床开发经济技术条件的重要指标之一,也是制定矿山(地下工程)疏干设计、施工方法,确定生产能力和地下工程防护设施的主要依据。同时它也是划分矿床水文地质类型、矿床水文地质复杂程度的重要指标之一,是整个矿床水文地质学的核心。由于矿井和地下工程涌水量预测的方法基本相同,因此我们下面将主要以矿坑水的预测来研究这一问题。
一、矿坑涌水量预测的基本任务
矿坑涌水量的预测,是一项极其复杂的工作,所以在矿床调查的各个阶段都应按规范中提出的精度要求,认真、正确地预测出未来各种开采条件下的矿坑涌水量,其主要任务是:
(1)预测矿坑正常涌水量。系指采矿工程达到某一标高(水平或中段)时,正常状态下相对稳定时的总涌水量,通常指平水年的涌水量。
(2)预测矿坑最大涌水量。通常是指正常状态下开采工程在丰水年雨季的最大涌水量。对某些受暴雨控制的矿床,则应根据历史最大暴雨强度,预测出数十年一遇的特大暴雨可能出现的矿坑涌水量。
(3)预测开拓井巷涌水量。指开拓各类井巷过程中的涌水量。
(4)预测疏干工程排水量。指在设计疏干时间内,将地下水位降至某一规定标高时的疏干排水量。
在矿床地质调查的各个阶段,均以预测矿坑的正常和最大涌水量为主。
二、矿坑涌水量预测的特点
矿坑涌水量预测方法和供水勘探中的地下水资源计算方法基本类同,但两种水量计算的目的、计算工作条件、计算方法的具体运用方面仍有许多差别。
(1)为确保枯水期的安全供水,供水资源评价一般以提供枯水期最小开采量为目的;为确保矿山的安全生产,矿坑涌水量预测则以准确提供丰水期最大矿坑涌水量为目标。
(2)大多数的矿床分布于基岩山区,地下水的补排条件、矿坑充水条件、充水层边界条件复杂、含水介质非均质性极强,代表性水文地质参数难于选取,地下水流态和流场复杂,因此建立能够完全仿真客观水文地质条件的水文地质概念模型和数学模型的难度很大。
(3)矿山井巷类型与空间分布千变万化,开采方法、开采速度与规模等生产条件复杂且不稳定,与供水工程的简单配置和稳定的生产条件不可类比,因此这些人为因素增加了矿坑涌水量预测的不确定性与难度。
(4)矿坑疏干排水的水位降深一般都远比供水工程的水位降深大得多,大降深必然导致区域水文地质条件的严重干扰、破坏与变化,这些变化又很难予以正确的预测和定量化评价,无疑给矿坑涌水量的预测增加了困难。
(5)矿床水文地质调查大多是随矿山地质调查同时进行的,一般对水文地质工作投入的工作量有限,原始的地下水动态观测资料缺乏,客观上造成涌水量预测工作基础资料的缺乏。
鉴于以上特点,矿床勘探阶段的矿坑涌水量预测,实际上应属于近似性的评价计算,其精度难以和供水勘探中的资源评价相比。为了满足生产要求,除通过加强勘探调查、提高预测精度外,还应完善预测成果的表达形式,为设计与生产部门结合生产条件进行成果再开发提供科学依据,以提高成果的使用价值。
三、矿坑涌水量预测方法
如将矿井排水视作供水“大井”,则矿山井巷的涌水量预测即和供水水源地的资源量计算相当。因此,两者的水量计算原理和方法基本上是相同的,地下水资源评价方法的分类,也可作为矿坑涌水量预测方法的分类。这里,我们仅就矿坑涌水量预测中常用的几种方法运用中的特点作一简单介绍:
(一)预测矿坑涌水量的解析法
解析法是目前矿坑涌水量预测中应用最广泛的方法之一。利用解析法不仅可以计算矿井的涌水量,而且还能为矿井工程的疏干设计提供疏干时间、疏干区范围和疏干水位深度等数据。运用解析法进行矿坑涌水量计算时,要正确处理以下各方面的问题:
(1)区分稳定流与非稳定流。矿山建设期内,随着开拓井巷发展,矿井疏干漏斗将不断扩大,此时的流场属于非稳定流;在矿山的回采期,井巷轮廓已定,当地下水的补给量≥矿井的疏干水量时,疏干流场则转为稳定流状态;当补给量<疏干水量时,疏干流场仍维持非稳定流状态。
(2)区分层流与紊流。当矿区进行大降深疏干时(数十到数百米),在疏干工程附近将会出现非达西流(紊流),而以外的广大区域内仍为达西流。故直线渗透定律仍然是建立涌水量模型的理论基础,只有在岩溶管道为主的矿区,才采用非达西流的渗流模型。
(3)区分地下水的平面流和空间流。对于揭穿含水层的完整井巷,竖井排水将产生平面辐射流。水平巷道排水主要为剖面平面流,巷道两端为辐射流。对于复杂的巷道系统,排水初期,在统一降落漏斗形成前,在巷道系统的边缘将呈单方向的剖面流。当排水继续进行,形成统一降落漏斗时,流向巷道系统的地下水才过渡为近似的平面辐射流。对于非完整的井巷,据试验研究,在非完整井巷附近,相当于1.5~2.0倍含水层厚度的平面范围内,地下水呈空间流运动形式,以外的地区则为平面辐射流。
(4)区分潜水与承压水。矿床开采前的天然条件下,区分潜水与承压水是容易的。但在矿床开挖后,由于疏干降深很大,因此常常出现承压水转化为承压—无压水或无压水的情况。在某些情况下,还可能出现矿井一侧保持承压状态,而另一侧则由承压水转为无压水的状态,计算时,必须区别对待。
(5)倾斜巷道的处理。据前苏联学者阿勃拉莫夫证明,巷道的倾斜对涌水量的影响不大。当巷道倾斜度>45°时,可视为竖井,当用辐射流公式计算涌水量;当巷道倾斜度<45°时,则可视为水平巷道,用剖面流的单宽流量公式计算涌水量。
(6)疏干“大井”的半径(r0)。由于井巷系统的平面形状极不规则,分布面积很大且经常处于变化之中,故构成了复杂的内边界。在运用解析法计算涌水量时,可将形状复杂的井巷系统概化为一个“大井”,把井巷系统外边界圈定的范围或距井巷最近的封闭等水位线圈定的范围(F)视为该“大井”的面积,该“大井”的引用半径(r0)为:
现代水文地质学
此外,由于“大井”的半径(r0)较供水井的半径大得多,因此在利用稳定井流公式计算矿井涌水时,公式中的排水影响半径(或影响宽度),必须加上“大井”的引用半径(r0)。
(二)预测矿坑涌水量的数值法
由于数值法应用时,不像解析法那样受到许多条件的限制,因此它能较真实地刻画水文地质(概化)模型的各种特征,能够计算复杂边界条件、不规则形状含水层、含水层非均质性极强、多井干扰排水、各矿井疏干水平不同和各矿开拓时间各异等复杂条件下的矿坑涌水量。用数值法预测矿坑涌水量较之运用解析法有明显的优点,如运用得当,常能得到满意的结果。但数值法的运用要求有大量的勘探工程量和系统的地下水动态资料系列相匹配,因此一般只能在大水岩溶充水矿床进入矿床详查阶段时使用。
关于数值法的原理、计算方法和步骤,已在本书有关章节中介绍,这里仅就矿坑涌水量计算中,数值法所能解决的问题做一介绍。
(1)数值法具有反求含水层水文地质参数(T、μ*等)、验证边界条件和对水文地质概念模型进行识别的功能。所谓反求参数,实际上是利用已知某些时段的初始水头值和源汇项输入数值模型进行反演计算,通过参数的不断调整和计算水位与已知水位值的不断拟合,即可求得优化的水文地质参数值及合理的参数分区。这一求参过程同时也可对边界条件进行检验和提高水文地质模型的概化精度。
(2)数值法具有预测矿坑涌水量的功能。包括矿床开采期内各种水文地质条件、各种开采条件及各种设计疏干降深条件下各类井巷的正常涌水量和最大涌水量。其求解方法是:在模型识别阶段后,将疏干井巷以定水头I类边界处理,再根据已知的外边界条件求得相应疏干条件下的流场,最后输出预测井巷的涌水量、水位和时间。矿坑最大涌水量的计算,同样是把疏干井巷作为I类定水头边界处理,但一般是在稳定流场基础上,按雨季地下水位回升速度绘出边界及节点水头值,即可求出雨季末期或水位回升速度最大时期某种疏干井巷的预测最大涌水量。
(3)数值法可以模拟不同疏干方案地下水疏干过程,预报疏干地下水位的空间分布及选择最佳疏干方案和预报最佳(有效)疏干量。所谓有效疏干量是指在设计疏干时间内完成并和具体疏干工程相结合的矿坑排水数量。计算时,可通过每个疏干方案的一组疏干时间及其对应的疏干水量数据,绘制出不同疏干水平的疏干量和疏干时间的关系曲线,然后进行技术经济条件对比,确定出能在规定时间内达到疏干深度要求的疏干量,即为有效疏干量。
(4)用数值法预测矿坑涌水量时,还可反映出矿区在疏干条件下水文地质条件的变化、疏干对天然排泄点(泉)和供水水源地水量的袭夺,并作出相应的预报,或提出既能满足矿床疏干要求又使有害环境负效应降低到最小的矿区优化供水与排水方案。
(三)用Q(涌水量)-S(水位降深)外推法预测矿坑涌水量
由于矿床开采多是按不同开采水平进行的,因此矿床疏干工作也相应按不同疏干水平进行,这就为利用涌水量(Q)-水位降深(S)方程来外推更大疏干深度时的矿坑涌水量提供了方便条件。此外,对于一些井巷比较集中的矿山,也可根据矿区勘探时的抽、放水试验得到的Q、S数据,建立相应的Q-S曲线方程,外推矿山未来疏干降深时的矿坑涌水量。考虑到外推更大疏干降深时的地下水流态和Q-S曲线类型不会发生明显变化,一些专家认为外推范围不应超过抽(放)水试验时最大水位降深的2~3倍,并应由水均衡法对外推的矿井涌水量进行验证。由于Q-S曲线外推法避开了代表性水文地质参数难于获取、边界条件难于判别等计算工作中的困难,计算简便,因此适用于水文地质条件复杂的矿区和已有多年开采历史的矿区涌水量的计算。
(四)用相关外推法预测矿坑涌水量
预测矿坑涌水量的相关分析法和Q-S曲线外推法有其相似之处,只不过Q-S曲线法中的涌水量(Q)与水位降深(S)之间为函数关系;而相关分析法中涌水量(Q)和水位降深(S)之间则只需满足一种近似的相关统计关系即可。在相关分析法中,预求解的涌水量一般称因变量;影响涌水量变化的因素,如水位降深等称自变量。利用相关法外推涌水量时,不仅水位降深可以作为自变量,诸如影响涌水量变化的降雨量、河水水位标高、矿山井巷分布面积等条件以及疏干延续时间等因素都可作为自变量参与计算。根据所掌握的资料情况,可采用一元简单相关法或多元复相关来预测未来的矿坑涌水量。相关外推法运用的实际经验还证明,当矿区充水岩层的富水性较好、抽水试验降深很大而外推范围又较小时,以及在老矿区用上一水平排水量推算下一水平的涌水量时,相关外推法的预测结果可以非常精确。
(五)用水量均衡法预测矿坑涌水量
水量均衡法的实质,就是把矿井所处均衡区内的地下水补给量作为矿床开采时的矿坑涌水量。因此水量均衡法主要适用于被隔水边界所封闭的水文地质单元、地下水补给来源又比较单一的矿区涌水量的计算。如大气降水为主要补给源的分水岭裸露型充水矿床;北方岩溶区泉排型泉域内的岩溶水充水矿床;南方岩溶区地下暗河为主要充水水源的矿床;丘陵山区河谷盆地中以河水为主要充水水源的砂矿床等。
水量均衡法最大的缺陷是:不能对矿床开采后的水均衡关系作出正确的预测。因此水均衡法最好用于那些矿床开采前后,水量总的收入不会有较大变化的矿区。
由于水均衡法所预测出的是矿山井巷所获得的最大补给量,因此该方法还能验证其他方法所预测的涌水量的可靠程度。
(六)用水文地质比拟法预测矿坑涌水量
水文地质比拟法的基本原理是:用相似水文地质条件、已生产矿区的地下水开采资料,预测条件相似勘探区的矿坑涌水量。此方法更适用于已采矿区深部水平和外围矿段的涌水量预测。
由于水文地质条件完全相似的矿区是少见的,再加上开采条件的差异,故比拟法只是一种近似计算方法,但从国内外运用该方法经验来看,只要比拟关系建立得符合客观规律,尚不失为一种准确的矿坑涌水量预测方法。根据1984~1985年我国地质矿产部矿山水文地质工程地质回访调查组《岩溶充水矿山回访报告选辑》(地质出版社,1986年1月)提供的统计资料,将六个矿区、12次用比拟法预测的涌水量与矿坑实际涌水量相比较,其涌水量预测的误差率绝大多数在3.64%~30%之间。
3. 研究地下水动态与均衡的意义和基本任务
研究地下水动态与均衡,对于认识区域水文地质条件、水量和水质评价、水资源的合理开发与管理,以及水文地质基础理论研究等,都具有非常重要的意义。任何目的、任何勘查阶段的水文地质调查,都必须重视地下水动态与均衡的研究工作。由于对地下水动态规律的认识,往往要经过相当长时间的资料积累才能得出结论,因此在水文地质调查中,应尽早开展地下水动态与均衡研究。
地下水动态与均衡的研究意义具体表现在以下几方面:
(1)在天然条件下,地下水的动态是地下水埋藏条件和形成条件的综合反映。因此,可根据地下水的动态特征分析,认识地下水的埋藏条件、水量、水质形成条件和区分不同类型的含水层。
(2)地下水动态是均衡的外部表现,故可利用地下水动态资料计算地下水的某些均衡要素和含水层参数。如根据次降水量、潜水位升幅和潜水含水层给水度计算大气降水的入渗系数(α),根据潜水位的升幅或降幅计算地下水增加的储存量及潜水蒸发量,根据观测资料,用有限差分法计算含水层的给水度(μ)等。
(3)地下水动态资料是地下水资源评价和预测时必不可少的依据。由于地下水的数量与质量均随着时间而变化,因此一切水量、水质的计算与评价,都必须有时间的概念,例如,同一含水层,在雨季和旱季,丰水年和枯水年,其水资源数量与水质都可能大不一样,必须根据地下水动态与均衡资料进行有关计算。区域性地下水资源评价和一些岩溶地区的地下水评价主要是用水均衡法。
(4)用任何方法计算的地下水允许开采量(可采量),都必须用地下水均衡计算来检验,任何地下水开采方案,都必须受地下水均衡量的约束。为尽可能减少开采地下水引起的负作用,开采量一般不能超过地下水的补给量,即不破坏地下水的均衡状态。
(5)研究地下水的均衡状态,可预测地下水量、水质及与地下水有关的环境地质作用的变化及总体发展趋势。
(6)地下水动态与均衡的研究有助于水动力学、水文地球化学等方面基本理论的研究和验证。
地下水动态与均衡研究的基本任务:①查明地下水动态的变化规律、形成原因和动态类型;②测定地下水的均衡要素,确定含水层的有关参数,确定含水层之间及含水层与地表水体之间的水力联系;③水均衡分析计算,阐明水资源条件和水资源量;④预测地下水动态的变化趋势,为合理开发利用(或有效防范)地下水提供依据;⑤有关水文地质基本理论的研究和验证;⑥地震预报。
4. 地下水资源评价与水资源管理科学的新发展
近代地下水动力学方面的最突出的进步之一是越流理论的提出。自从1969年美国纽曼等发表了有关越流含水层方面的新理论之后,1972年又发表了关于确定越流多层含水层的水力性质的比率法,使解决地下水流向的非稳定运动计算问题前进了一大步。有关越流理论的基本要点,如弱透水层的垂直越流补给,弱透水层弹性储量的释放及其对非含水层的影响等目前仍然在继续应用和研究发展中。用非稳定抽水资料计算水文地质参数的方法已在世界范围内得到广泛的应用。我国在这方面的研究成果很多,如杨天行、傅泽周、林学钰等著的《地下水流向井的非稳定流原理和计算方法》(1980年),胡佩清等著的《有越流补给时流向干扰井的地下水不稳定流计算》(1982年),张蔚榛主编的《地下水非稳定流计算和地下水资源评价》(1983年)等等,都是我国有关这方面的早期研究成果。
在地下水资源评价方法方面,在已有的解析法、相关法、河流水文分割法的基础上,20世纪70年代以来,由于引进了法国水文地质学家G.Castany的“水文地质概念模型”这一新概念和计算机在水文地质学中的广泛应用,使数值法在水资源评价和预测中得到了迅速的发展。它使地下水资源研究从传统的研究方法转到模型研究,这不仅是地下水资源区域性模拟评价的一个重大进展,而且在推动水文地质学从定性研究进入更加科学的定量化研究的进程中作出了巨大的贡献。
地下水资源管理学是近代水文地质学的一个重要分支。20世纪70年代以来,水文地质学家已经有意识的在寻求解决水危机的途径,并将它纳入环境生态与社会的大系统中进行水资源系统分析。到80年代,由于系统理论的引进和应用,加上数学模拟和计算机技术应用于寻求多目标下,地下水最佳开发理论与方法的日益完善,使水资源管理这一学科得到迅速的发展,并使复杂的水资源管理问题得到解决。
在我国,地下水管理研究始于20世纪80年代。最早引进国外地下水管理成就的文章是“美国地下水资源管理概况”(林学钰,水文地质工程地质,1983年第2期)。从那时开始,水文地质学家们在我国的甘肃武威、北京、西安、哈尔滨、沈阳、河南的新乡、平顶山、河北的邯郸等几乎遍及全国各大、中城市和流域规划中都建立了为各种目的服务的、各种类型的地下水管理模型。在这方面,最早的代表性研究成果是林学钰,焦雨等完成的国家“六·五”科技攻关项目(第38—1—20A)的成果《石家庄市地下水资源的科学管理》(1987年)。而后,陈爱光等出版了作为教材的《地下水资源管理》(1991年),以及林学钰、杨悦所的《实用地下水管理模型》(1992年)和《地下水管理》(1995年)等专著。1990年,林学钰、王兆馨等还出版了国家标准“地下水资源管理模型工作要求”。此外,为了实现滴水管理的内容和要求,达到管理的最终目标,使所建立的各类地下水管理模型得以实施和运用,专著《地下水水量、水质模拟及管理程序集》(林学钰等,吉林科学技术出版社,1988年)又应运出版。这些成果在我国社会、经济发展和环境建设与保护事业中都发挥了重要的作用。
水资源管理学的发展和进步,主要表现在水资源管理已从过去一般性的水政策、水均衡管理发展到地下水动态和水资源量与质的管理;地表水和地下水联合管理;区域水文地质动力条件的控制和为控制地质灾害的土地利用管理等。管理内容日益丰富,管理方法日趋多样,其中,地下水管理模型是实现地下水管理的重要工具。
管理途径除了常用的控制地下水开采量和地下水位,防止劣质水入侵,进行地下水人工回灌,实行地表水和地下水联合运行以外,还重视地下水资源的多年周期机制的形成和流域整体水均衡、水动态的预测研究,并认为这是地下水管理的重要基础。在预测时,强调考虑气候变化和人类活动的影响因素,考虑地下水流确定模型和随机模型的结合。
从总体上看,20世纪中国的水资源管理已从单纯的考虑合理开发利用水资源和防止水资源枯竭发展到综合考虑防止、控制和改善因水资源开发利用而产生的生态环境副作用和经济技术限制条件的多层次、多目标的管理。
此外,还需提到的是,在目前盛行应用的线性规划、多目标规划、动态规划等原理建立和求解的集中参数系统或分布参数系统地下水管理模型的同时,中国、前苏联和澳大利亚等国家的学者还认为,某种专门编制的水文地质图也是一种地下水管理的有效工具。这种图除了可以给出形成过程外,还可以给出一些更具体的水资源开发利用等信息。例如,林学钰、陈梦熊等于1999年完成的《松嫩盆地地下水资源与可持续发展研究》专著中,应用GIS技术绘制了1∶1 000 000“松嫩盆地地下水系统水资源开发模式图”,该图主要表达了松嫩盆地各亚系统和各县、市的地下水资源开发模式;从空间和时间上反映了松嫩盆地全区和各亚系统内可利用水资源的组成和1994年地下水和地表水的实际开采量;预测了2000年和2010年的全区和各亚系统需水量增长趋势和可利用水资源量与需水量的对比情况;以及主要含水层厚度变化与地下水的分布状况等。可以说,该图本身就是一张水资源管理图。又如,20世纪80年代后期,由澳大利亚W.R.Evans等学者提出的在Murray盆地,应用1∶250 000比例尺编制的水文地质图,进行地下水资源和土壤盐碱化的管理。这套图的内容表达了地下水在土壤盐碱化和地表水盐化过程中的影响,描述了可用的地下水资源,并提出潜在的地下水和土壤盐碱化危害以及地下水规划管理的目标范围及其分区等。
用水文地质图进行地下水管理,其特点是直观、清晰、可操作性强,具有数学模型不可比拟的优点。当然,如何将水文地质图与地下水管理模型有机配合和应用将是今后进一步完善研究的课题。
总之,目前地下水资源管理研究在国内外已十分普及,近20年来它已形成了自己的理论和研究方法,成为现代水文地质学的一个新分支,它正方兴未艾,前途广阔。
5. 库区地下水动态观测网的补充调整和作用
库区地下水动态长期观测网的建设和运行,是库区地质灾害研究的一项基础设施,是监测水库周边地下水位变化必不可少的手段。
在1956~1959年期间,由地质总队负责勘探并设置的库区地下水动态长期观测网,是按水库运用水位350m高程时,可能受影响的库周地带布设的,其分布自坝址区伸向上游,北至黄河夹马口,西至渭河耿镇和洛河船舍村,控制面积达7000km2,共设置观测剖面34条,观测孔296个。
观测孔是边建边投入使用的,故观测工作始于1956年,由地质总队观测组(站)负责,1958年并入黄委会三门峡库区水文实验总站。1960年9月水库开始蓄水,因在高水位运用方式下发生严重的泥沙淤积,1962年3月被迫改为低水位排沙运用,随即关闭了大部分观测孔,至1975年10月观测工作全部停止。
但是,库区渭河段的泥沙淤积仍在溯源发展,即常言的“翘尾巴”淤积,致使同流量水位在上升,沿岸潜水位也随之涌高,对关中盆地东部粮仓和西安市的浸没威胁仍很突出。有鉴于此,原地质部第五大队和随后的陕西省第二水文地质队,自1966年至1976年期间,对观测剖面和观测孔进行了四次补充和调整。重点放在渭河南岸临潼至潼关段的低阶地,即原高水位运用时的淹没区,增设有70~78号共9条观测剖面,62个观测孔;同时,接收和修复原由水文总站管理的部分观测孔。截至1986年,仍在观测的剖面有13条,观测孔81个。其中包括渭河北岸10号剖面(4孔)和河南灵宝57号剖面(5孔)(见图12)。
积三门峡水库运用25年的地下水动态观测资料,陕西省第二水文地质队对其进行了统一整编,刊印出版,全称是《黄河三门峡水库区地下水位年鉴(1960~1985年)》,分上、下两册,共1361页,于1986年12月出版,提供给有关部门和地方使用。年鉴编辑工作由陕西省第二水文地质队动态组承担,技术负责白恩辉,有俞山河、孙传尧、蒋少平、金蓉、薛侠、吴贤等同志共同完成。
地质部第五大队成立之后设立的浸没盐碱组,负责库区地下水动态长期观测工作,以后又改称动态组,先后任组长的有马鸿云、李志存、毛庆霞、白恩辉、俞山河、李忠学、王佳武、邱玉龙等,负责观测管理、维修的有岳凤杰、曾昭壁、谢代先三位在职工人。曾不定期地召开农民观测工座谈会,曾请渭南市政府与省地质局第二水文地质队共同颁布观测孔的保护公告。观测项目已简化,只有地下水位一项,逐月汇总分析。每年都要收集水文站河水位、流量和当地气象资料,以及灌区、水源地等干扰因素的调查资料。逐年编制地下水动态分析图表,编写年度报告。
库区地下水动态观测成果,在水库投入运用之前、之后都在发挥其重要作用,简述如下:
1.在水库投入运用之前,利用仅有1~3年的观测数据,为进一步研究和掌握三门峡坝址区和库区的水文地质条件,为预测浸没、坍岸等水库地质灾害,提供了所需的水文地质参数。这个目的和作用早已达到。
2.在蓄水运用时期,研究和掌握水库周边不同水文地质条件的地下水动态特征,划分地下水动态成因类型,圈定潜水涌高范围,研究水库地质灾害的发生发展及其防治措施,探索多泥沙河流水库在淤积回水作用下的潜水涌高,以及浸没预测方法研究等,为合理利用水库提供地质依据,也为未来选择库、坝址和防治水库地质灾害积累了实践经验。在近20年里,第五大队和第二水文地质队,依据库区地下水动态等资料,编写的专题性、综合性、阶段性和总结性地质科研成果就有28份(见地质成果目录),且大部分已提供给有关部门和地方使用,体现了地下水长期观测工作的作用,达到甚至超过了预期目的。
3.三门峡水库改为低水位全年控制以来,渭河下游地下水长期观测工作及已出版的库区地下水位年鉴(1960~1985年)文献,在工农业和城市开发地下水、水资源评价、渠灌区合理用水等方面发挥着积极作用。如1993年提交的《陕西省华阴、华县平原区水文地质详查报告》(编写人蒋少平、张茂省),1998年提交的《渭南城区地下水动态研究报告1985~1997年》(编写人邱玉龙、武佳英、赵格宁),以及几个水源地勘察、水资源评价、水资源管理等,都充分利用了地下水动态长期观测资料,并获得好评。
在此,值得一提的是,由于开发地下水的水源地在增多,范围在继续扩大,促进了盐碱地的脱盐过程,成为高产良田。从而验证了1972年提交的《盐碱地井灌好》等报告所阐明的土壤积盐脱盐原理,揭示出水库浸没灾害的防治途径。
4.还必须提及的是,第二水文地质队曾请示是否停止地下水长期观测工作,地矿部水文地质工程地质司于1983年8月在给陕西省地矿局的复函中指出:“虽然已提交《黄河三门峡水库运用阶段工程地质问题研究报告》,但三门峡水库地区的水文地质工程地质问题仍然存在,积累长期地下水动态观测资料是一项很重要的工作,是短期勘探收集不到的历史资料,因此望能继续进行此项工作。”2000年4月,按照由省地质环境监测总站统管规定,将库区地下水长期观测工作移交给渭南市矿管局地质环境监测站;2002年,改属渭南市国土资源局。
6. 参考文献
75-57-01-01专题报告.华北地区大气水-地表水-土壤水-地下水相互转化关系研究.1990
蔡述明,马毅杰等.三峡工程与沿江湿地及河口盐渍化土地.北京:科学出版社,1997
陈吉余,沈焕庭等.三峡工程对长江河口盐水入侵和侵蚀堆积过程影响的初步分析.长江三峡工程对生态与环境影响及其对策研究论文集.北京:科学出版社,1987,350~368
陈启生,戚隆溪.有植被覆盖条件下土壤水盐运动规律研究.水利学报,1996,1:38~46
陈亚新,史海滨,田存旺.地下水与土壤盐渍化关系的动态模拟.水利学报,1997,5:77~83
程竹华,张家宝,徐绍辉.黄淮海平原三种土壤中优势流现象的试验研究.土壤学报,1999,36(2):154~161
冯绍元,张瑜芳,沈荣开.非饱和土壤中氮素运移与转化试验及其数值模拟.水利学报,1996,8:8~15
冯绍元等.非饱和土壤中氮素运移与转化及其数值模拟.水利学报,1996,8:8~15
冯绍元等.排水条件下饱和土壤中氮肥转化与运移模型.水利学报,1995,6:16~22
郭元裕.农田水利学(第二版).北京:水利电力出版社,1986
黄冠华,叶自桐,杨金忠.一维非饱和溶质随机运移模型的谱分析.水利学报,1995,11:1~7
黄冠华.大尺度非饱和土壤水分运动的随机模型及有效参数的解析结构.水利学报,1997,11:39~48
黄冠华.土壤水力特性空间变异的试验研究进展.水科学进展,1999,10(4):450~457
黄康乐.求解二维饱和—非饱和溶质运移问题的交替方向特征有限单元法.水利学报,1988,7:1~13
黄康乐.求解非饱和土壤水流问题的一种数值方法.水利学报,1987,9:9~16
黄康乐.求解非饱和纵向弥散系数的一种简便方法.水利学报,1987,2:51~54
黄康乐.野外条件下非饱和弥散系数的确定.土壤学报,1988,25(2):125~131
黄康乐.原状土等温吸附特性的试验研究.灌溉排水,1987,6(3):26~29
黄元仿,李韵珠,陆锦文.田间条件下土壤氮素运移的模拟模型Ⅰ.水利学报,1996,6:9~13
黄元仿,李韵珠,陆锦文.田间条件下土壤氮素运移的模拟模型Ⅱ.水利学报,1996,6:15~23
康绍忠,李晓明等.土壤-植物-大气连续体水分传输理论及其应用.北京:水利电力出版社,1994
康绍忠,刘晓明,张国瑜.作物覆盖条件下田间水热运移的模拟研究.水利学报,1993,3:11~17
康绍忠.土壤水动态随机模拟研究.土壤学报,1990,27(1):17~24
雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988
雷志栋,杨诗秀.非饱和土壤水一维流动的数值模拟.土壤学报,1982,19(2):141~153
李恩羊.渗灌条件下非饱和土壤水分运动的数学模拟.水利学报,1982,4:1~10
李法虎.土壤中水、热、溶质运移的研究现状及展望.灌溉排水,1994,13(1):7~9
李庆扬,王能超,易大义.数值分析.武汉:华中理工大学出版社,1991
李韵珠,陆锦文,黄坚.蒸发条件下粘土层与土壤水盐运移.1985,济南,国际盐渍土改良学术讨论会论文集:176~190
李韵珠、李保国.土壤溶质运移.北京:科学出版社,1997
刘亚平,陈川.土壤非饱和带中的优先流.水科学进展,1996,7(1):85~89
刘亚平.稳定蒸发条件下土壤水盐运动的研究.1985,济南,国际盐渍土改良学术讨论会论文集:212~225
罗秉征,沈焕庭等.三峡工程与河口生态环境.北京:科学出版社,1994
戚隆溪,陈启生,逄春浩.土壤盐渍化的监测和预报研究.土壤学报,1997,34(2):189~198
启东县土壤普查办公室,南通市农业局,江苏省土壤普查办公室.江苏省启东县土壤志.1985
任理.地下水溶质运移计算方法及土壤水热动态数值模拟的研究.武汉水利电力大学博士论文,1994
任理.有限解析法在求解非饱和土壤水流问题中的应用.水利学报,1990,10:55~61
邵爱军,李会昌.野外条件下作物根系吸水模型的建立.水利学报,1997,2:68~72
邵明安,杨文志,李玉山.植物根系吸收土壤水分的数学模型.土壤学报,1987,24(4):296~304
邵明安.植物根系吸收土壤水分的数学模型(综述).土壤学进展,1986,14(3):6~15
沈荣开,任理,张瑜芳.夏玉米麦秸全覆盖下土壤水热动态的田间试验和数值模拟.水利学报,1997,2:14~21
沈荣开.非饱和土壤水运动滞后效应的研究.土壤学报,1993,30(2):208~216
沈荣开.土壤水运动滞后机理的试验研究.水力学报,1987,4:38~45
石元春,李保国,李韵珠,陆锦文.区域水盐运动监测预报.石家庄:河北科学技术出版社,1991
石元春,李韵珠,陆锦文等.盐渍土的水盐运动.北京:北京农业大学出版社,1986
史海滨,陈亚新.吸附作用与不动水体对土壤溶质运移影响的模拟研究.土壤学报,1996,33(3):258~266
史海滨、陈亚新.饱和-非饱和流溶质传输的数学模型与数值方法评价.水利学报,1993,8:49~55
水建高,张瑜芳,沈荣开.不同渗漏强度条件下淹水土壤中NH4+-N转化运移的数值模拟.水利学报,1996,3:57~63
隋红建,曾德超,陈发祖.不同覆盖条件对土壤水热分布影响的计算机模拟:Ⅰ—有限元分析及应用.地理学报,1992,47(2):181~186
隋红建,曾德超,陈发祖.不同覆盖条件对土壤水热分布影响的计算机模拟:Ⅱ—数学模型.地理学报,1992,47(1):74~79
孙菽芬.土壤内水分流动及温度分布计算——耦合型模型.力学学报,1987,19(4):374~380
王福利.用数值模拟方法研究土壤盐分动态规律.水利学报,1991,1:1~9
王亚东,胡毓骐.裸地蒸发过程土壤盐分运移的实验及数值模拟研究.灌溉排水,1992,11(1):1~5
魏新平,王文焰,王全九,张建丰.溶质运移理论的研究现状和发展趋势.灌溉排水,1998,17(4):58~63
席承藩,徐琪等.长江流域土壤与生态环境建设.北京:科学出版社,1994
谢森传,杨诗秀,雷志栋.水平入渗条件下溶质含量对土壤水分运动的影响和土壤水盐运动综合扩散系数Dsh(θ)的测定.灌溉排水,1989,8(1):6~12
徐绍辉,张佳宝.土壤中优势流的几个基本问题研究.水文地质工程地质,1999,6:27~30
徐绍辉.土壤中优势流的数值模拟研究.中国科学院南京土壤研究所博士后研究工作报告,1998
薛泉宏,蔚庆丰等.黄土性土壤K+吸附、解吸动力学研究.土壤学报,1997,34(2):113~122
杨邦杰,隋红建.土壤水热运移模型及其应用.北京:中国科学技术出版社,1997
杨金忠,蔡树英.土壤中水、汽、热运动的耦合模型和蒸发模拟.武汉水利电力大学学报,1989,22(4):157~164
杨金忠,蔡树英等.区域水盐动态预测预报理论与方法研究.国家教委博士点基金资助项目研究报告,1993
杨金忠,叶自桐.野外非饱和土壤水流运动速度的空间变异性及其对溶质运移的影响.水科学进展,1994,5(1):9~17
杨金忠,叶自桐等.野外非饱和土壤中溶质运移的试验研究.水科学进展,1993,4(4):245~2
杨金忠.一维饱和与非饱和水动力弥散的实验研究.水利学报,1986,3:10~21
杨金忠,蔡树英,叶自桐.区域地下水溶质运移随机理论的研究与进展.水科学进展,1998,9(1):84~98
杨培岭,郝仲勇.植物根系吸水模型的发展动态.中国农业大学学报,1999,4(2):67~73
姚其华,邓银霞.土壤水分特征曲线模型及其预测方法的研究进展.土壤通报,1992,23(3):142~145
尤文瑞.土壤盐渍化预测预报的研究.土壤学进展,1988,16(1):1~8
张妙仙.次生盐渍化土壤潜水系统水-盐-作物产量动态模拟及调控.中国科学院、水利部水土保持研究所,博士学位论文,1999
张明炷,黎庆淮,石秀兰.土壤学与农作学(第三版).北京:水利水电出版社,1994
张蔚榛,张瑜芳,沈荣开.排水条件下化肥流失的研究——现状与展望.水科学进展,1997,8(2):197~204
张蔚榛.土壤水盐运移数值模拟的初步研究.农田排灌及地下水土壤水盐运动理论和应用论文集,武汉:武汉水利电力大学,1992,244~263
张蔚榛等.地下水与土壤水动力学.北京:中国水利水电出版社,1996
张效先.饱和条件下田间土壤纵向及横向弥散系数的试验和计算.水利学报,1989,1:1~7
张效先.求田间土壤横向弥散系数的一种实验和解析解.水利学报,1989,6:29~35
张瑜芳,刘培斌.不同渗漏强度条件下淹水稻田中铵态氮转化和运移的研究.水利学报,1994,6:10~19
张瑜芳,张蔚榛,沈荣开等.排水农田中氮素转化运移和流失.武汉:中国地质大学出版社,1997
张瑜芳,张蔚榛.垂向一维均质土壤水分运动的数值模拟.工程勘察,1984,4:51~55
张瑜芳.土壤水动力学.武汉水利电力大学研究生教材.1987
中国科学院环境评价部,长江水资源保护科学研究所.长江三峡水力枢纽环境影响报告书(简写本).北京:科学出版社,1996
中国科学院三峡工程生态与环境科研项目领导小组.长江三峡工程对生态与环境的影响及对策研究.北京:科学出版社,1988
朱学愚、谢春红等.非饱和流动问题的SUPG有限元素数值法.水利学报,1994,6:37~42
祝寿泉,单光宗等.三峡工程对长江三角洲土壤盐渍化演变的影响及其对策.长江三峡工程对生态与环境影响及其对策研究论文集.北京:科学出版社,1987,454~462
左强,陆锦文.裸地水、汽、热昼夜变化规律的模拟与分析.中国博士后首届学术大会论文集(下集),北京:国防工业出版社,1993
左强.改进交替方向有限单元法求解对流-弥散方程.水利学报,1993,3:1~10
Aboitiz M et al.Stochastic soil moisture estimation and forecasting for irrigated field.Water Resour.Res.,1986,22(2):180~190
Bear J.Dynamics of fluid in porous media.American Elsevier,New York,1972.(中译本,多孔介质流体动力学,J.贝尔著,李竞生、陈崇希译,孙纳正校,北京:中国建筑工业出版社,1983)
Bouma J.Soil morphology and preferential flow along macropores.Agricultural Water Management,1981,3:235~250
Brandt A et al.Infiltration from a trickle source:Ⅰ.Mathematical models.Soil Sci.Soc.Am.Proc.,1971,35:675~683
Bresler E.Simultaneous transport of solutes and water under transient unsaturated flow conditions.Water Resour.Res.,1973,9(4):975~985
Bresler E.Simultaneous transport of solutes and water under transient unsaturated flow conditions.Water Resour.Res.,1973,9:975~986
Chandra S P O,Amaresh K R.Nonlinear root⁃water uptake model.J.Irrig.and Drain.Engi.,1996,122(4):198~202
Chung S,Horton R.Soil heat and water flow with a partial surface mulch.Water Resour.Res.,1987,23(12):2175~2186
Clothier B E,Kirkham M B,Mclean J E.In situ measurements of the effective transport volume for solute moving throughsoil.Soil Sci.Soc.Am.J.,1992,56:733~736
Clothier.Diffusivity and one⁃dimensional absorption experiment.Soil Sci.Soc.Am.Proc.,1983,47:641~644
Cushman J H et al.A Galerkin in time,linearized finite element model of two⁃dimensional unsaturated porous media drainage.Soil Sci.Soc.Am.J.,1979,43:638~641
De Smedt F,Wierenga P J.Mass transfer in porous media with immobile water.J.Hydrol.,1979,41:59~69
De Smedt F,Wierenga P J.Solute transfer through columns of glass beads.Water Resour.Res.,1984,20(2):225~233
de Vries D A.Simultaneous transfer of heat and moisture in porous media.Eos Trans.AGU,1958,39(5):909~916
Elrick D E et al.Estimating the sorptivity of soils.Soil Sci.,1982,132(2):127~133
Eric K,W,Mary P A.Simulation of preferential flow in tree⁃dimensional heterogeneous conctivity fields with realistic internal architecture.Water Resour.Res.,1996,32(3):533~545
Feddes R A,Kowalik P J,Zaradny H.Simulation of field water use and crop yield.Centre for Agricultural Publishing and Documentation,Wageningen,the Netherlands,1978,19~20
Flury,Markus,Hannes Fl hler Susceptibility of soils to preferential flow of water.Water Resour.Res.,1994,30:1945~1954
Gardner W R.Dynamic aspects of water availability to plant.Soil Sci.1960,89:63~73
Gardner W R.Relation of root distribution to water uptake and availability.Agron.J.,1964,16:41~45
Gardner W R.Solution of the flow equation for the drying of soils and other porous media.Soil Sci.Soc.Am.Proc.,1959,23:183~187
Gaudet J P.Solute transfer,with exchange between mobile and stagnant water,through unsaturated sand.Soil Sci.Am.J.,1977,41:665~671
Gerke H H,van Genuchten M Th.A al⁃porosity model for simulating preferential movement of water and solutes in structured porous media.Water Resour.Res.,1993,29(2):305~319
Germitza,Page E R.An empirical mathematical model to describe plant root system.J.Appl.Ecol.,1974,11(2):773~781
Ghodrati M,Jury A W.A field study using dyes to characterize preferential flow of water.Soil Sci.Soc.Am.J.,1990,54:1558~1563
Gureghian A B.A 2⁃D finite⁃element scheme for the saturated⁃unsaturated with applications to flow through ditch⁃drained soils.J.Hydrol.,1981,50:333~353
Hanks R J,Bowers S A.Numerical solution of the moisture flow equation for infiltration into layered soil.Soil Sci.Soc.Am.Proc.,1962,26:530~534
Hanks R J,Klute A,Bresler E.A numerical method for estimating infiltration,redistribution,drainage,and evaporation of water from soil.Water Resour.Res.,1969,5:1065~1069
Herkelrath W N,Miller E E,Gardner W R.Water uptake by plant:Divided root experiment.Soil Sci.Soc.Am.J.,1977,41:1033~1038
Hillel D,Talpaz H,Van Keulen H.A macroscopic scale model of water uptake by an nonuniform root system and salt movement in the soil profile.Soil Sci.1976,121:242~255
Hornung V,Messing W.A predictor⁃corrector alternating⁃direction implicit method for two⁃dimensional unsteady saturated⁃unsaturated flow in porous media.J.Hydrol.,1980,47:317~323
Jaynes D B,Logsdon S D,Horton R.Field method for measuring mobile/immobile water content and solute transfer rate coefficient.Soil Sci.Soc.Am.J.,1995,59:352~356
Jones M J,Watson K K.Movement of non⁃reactive solute through unsaturated soil zone.Australian Water Resources Council,Technical Paper No.66,1982
Jury W A,Bellantuoni B.Heat and water movement under surface rocks in a field soil:Ⅰ.Thermal effects.Soil Sci.Soc.Am.J.,1976,40(4):505~509
Jury W A,Bellantuoni B.Heat and water movement under surface rocks in a field soil:Ⅱ.Moisture effects.Soil Sci.Soc.Am.J.,1976,40(4):509~513
Lantz R B.Quantitative evaluation of numerical diffusion(Truncation error).Soc.Petr.Eng.J.,1971,11:315~320
Li Yimin,Ghodrati M.Preferential transport of solute through soil columns containing constructed macropores.Soil Sci.Soc.Am.J.,1997,61:1308~1317
Mahrer Y,Katan J.Spatial soil temperature regime under transparent polyethylene mulch:Numerical and rxperimental studies.Soil Sci.,1981,131:82~87
Mantoglou A,Gelhar L W.Stochastic modeling of large⁃scale transient unsaturated flow system.Water Resour.Res.,1987,23(1):37~46
Mantoglou A.A theoretical approach for modeling unsaturated flow in spatially variable soils:Effective flow models in finite domains and nonstationarity.Water Resour.Res.,1992,28(1):251~267
Milly P C D.Moisture and heat transport in hysteretic inhomogeneous porous media.Water Resour.Res.,1982,18(3):489~498
Mohanty B P et al.Preferential transport of nitrate to a tile drain in an intermittent⁃flood⁃irrigated field:Model development and experimental evaluation.Water Resour.Res.,1998,34(5):1061~1076
Molz F J,Remson I.Extracting term models of soil moisture use of transpiring plant.Water Resour.Res.,1970,6:1346~1356
Molz F J.Models of water transport in the soil⁃plant system:A review.Water Resour.Res.,1981,17:1254~1260
Molz F J.Water transport in the soil⁃root system:Transient analysis.Water Resour.Res.,1976,12:805~807
Mualem Y.A modified dependent⁃domain theory of hysteresis.Soil Sci.,1984,137:283~291
Murali V.Competitive absorption ring solute transport in soils.Ⅱ.Simulations of competitive absorption.Soil Sci.,1983,135(4):203~213
Murali V.Competitive absorption ring solute transport in soils.Ⅱ.Simulations of competitive absorption.Soil Sci.,1983,135(4):203~213
Neuman S P et al.Finite element analysis of two⁃dimensional flow in soil considering water uptake by roots.Ⅰ.Theory.Soil Sci.Soc.Am.Proc.,1973,37:522~527
Niber J L,Walter M F.Two⁃dimensional soil moisture flow in a sloping rectangular region:experimental and numerical studies.Water Resour.Res.,1981,17(6):1772~1730
Nielsen D R,Biggar J W.Miscible displacement in soils:Ⅰ.Experimental information.Soil Sci.Soc.Am.Proc.,1961,25:1~5
Nielsen D R,Biggar J W.Miscible displacement in soils:Ⅲ.Theoretical consideration.Soil Sci.Soc.Am.Proc.,1962,26:216~221
Nielsen D R et al.Water flow and solute transport process in unsaturated zone.Water Resour.Res.,1986,22(9):89~110
Nimah M N,Hanks R J.Model for estimating soil water,plant and atmosphere interrelations:Field test of model.SoilSci.Soc.Am.Proc.,1973,37:522~527
Olsen S R,Kemper W D.Movement of nutrients to plant roots.Adv.Agron.,1968,80:91~151
Parlange M B et al.Physical basis for a time series model of soil water content.Water Resour.Res.,1992,28(9):2437~2446
Philip J R,de Vries D A.Moisture movement in porous materials under temperature gradients.Eos Trans.AGU,1957,38(2):222~232
Pickens J F et al.Finite element analysis of transport of water and solutes in tilo⁃drained soils.J.Hydrol.,1979,40:243~264
Selim H M,Kirkham D.Unsteady two⁃dimensional flow of water in unsaturated soils above an impervious barrier.SoilSci.Soc.Am.Proc.,1973,37:489~495
Smiles D E et al.Hydrodynamic dispersion ring absorption of water by soil.Soil Sci.Soc.Am.J.,1978,42:229~234
Smiles D E,Philip J R.Solute transport ring absorption of water by soil:Laboratory studies and their practicalimplication.Soil Sci.Soc.Am.J.,1978,42:537~544
Stephens D B,Neuman S P.Free surface and saturated⁃unsaturated analysis of borehole infiltration tests Above water table.Adv.Water Resour.,1982,5:111~116
Van Genuchten M Th.A closed⁃form equation for predicting the hydraulic conctivity of unsaturated soils.Soil Sci.Soc.Am.J.,1980,44(5):892~898
Van Genuchten M Th.A comparison of numerical solutions of the one⁃dimensional unsaturated⁃saturated flow and mass transport equations.Adv.Water Resour.,1982,5:47~55
Van Genuchten M Th.An Hermitian finite element solution of the two⁃dimensional saturated⁃unsaturated flow equation.Adv.Water Resour.,1983,6
van Genuchten.M.Th.Mass transfer studies in sorpting porous media.Ⅱ.Experiment evaluation with Tritium(H2O).Soil Sci.Am.J.,1977,41:272~285
Wu G,Chieng S T.Modeling multicomponent reactive chemical transport in non⁃isothermal unsaturated/saturated soil.Part 1.Mathematical model development.Transa.ASAV,1995,38(3):817~826
Wu G,Chieng S T.Modeling multicomponent reactive chemical transport in non⁃isothermal unsaturated/saturated soil.Part 2.Numerical simulations.Transa.ASAV,1995,38(3):827~838
Yeh T⁃C J et al.Stochastic analysis of unsaturated flow in heterogeneous soil:1.Statistically istropic media.Water Resour.Res.,1985,21(4):447~456
Yule D F,Gardner W R.Longitudinal and transverse dispersion coefficients in unsaturated plain field sand.Water Resources Research,1978,14(4):582~589
Zhang R,Huang K,van Genuchten M Th.An efficient Eulerian⁃Lagrangian method for sovlving solute transport problems in steady and transient flow field.Water Resour.Res.,1993,29(12):1431~1438
Zhang Weizhen,Zhang Yufang.The crop root uptake model and the simulation of the soil water movement on the condition of the crop growth.Proceedings of the International Conference on Modeling Groundwater Flow and Pollution,Nanjing University,Nanjing,China,1991.3~12
7. 地下水资源预测
水源地地下水资源的丰富程度除了与补给源关系之外,更主要取决于水源地内地层中的含水层厚度、含水层粒径及其分选性好坏,含水层越厚、粒径越粗、分选取性越好,其地下水资源越丰富。为了更好地从全区角度预测地下水资源,利用含水因子等值线分布图(图4),并参考其基岩埋深情况,便可作出预测。含水因子参数为笔者首创,其数值越大,水量亦越大。据此将全区地下水丰富程度划为4类,即强富水区、富水区、中等富水区和弱富水区。如图5颜色由深渐浅所示。
强富水区:位于测区中部,水量因子数值在26000Ω·m2以上。该区呈条带状弯曲,宽约1 km,基岩埋深150 m以上。
图5 地下水资源预测示意图
富水区:位于强富水区两侧,属测区中部,平行河床分布。水量因子数值为16000~26000 Ω·m2。基岩埋深在100~150 m之间。
中等富水区:位于富水区外侧,水量因子数值为8000~16000 Ω·m2。基岩埋深多数在60~100 m之间。
弱富水区:位于测区南北两侧,靠近基岩出露区,水量因子数值在8000 Ω·m2以下,基岩埋深小于60 m。