当前位置:首页 » 发表方式 » 光纤通信电子工业出版社

光纤通信电子工业出版社

发布时间: 2021-03-10 19:14:02

⑴ 学习光纤有关知识,用什么书好

你应该对一些基本的光学比较熟悉了吧,有基础的话可以先找本光纤光学看看,然后可以再看一下光纤通信方面的书。这两个是比较基础的东西,国外的书好些,不过我忘了我们当时用的是谁编的了…自己网络一下吧。

⑵ 【求助】想知道各高校光信专业学生有关光通信或光网络的课程教材情况,请帮助。

华科的课本很多是校内编的 其他一般都用的很经典的教程 比如梁铨廷的物理光学什么的,樊昌信通信原理(盗版很多错误!个人建议直接看美版教程),光网络是老师发的讲义。

⑶ 求《光纤通信》第2版 (王辉主编 电子工业出版社)的课后答案

没有。自己做吧

⑷ 光纤通信原理及应用 电子工业出版 编著 杨英杰 赵小兰,课后答案谁有啊,发到邮箱[email protected]。谢谢

答案简单我有

⑸ 怎样能快速对【通信知识】有一个【清楚的框架性】了解呢:请推荐【书或者网络资料】

推荐一本书,入门容易。现代通信原理》曹志刚 钱亚生 清华大学出版社
网上能下载到PDF的。
至于你所说的绘声绘色 是基本不可能的。现在通信技术的高端都掌握在国外人手里。有好的中文版的通信教材就已经不错了。如果想学好肯定要花很多时间的,我是通信专业的,感觉通信真的很难。

⑹ 光纤通信的同名图书

同名图书信息
书 名:光纤通信作者:聂兵
出版社:北京理工大学出版社
出版时间:2010-1-1
ISBN: 9787564025731
开本:16开
定价:28.00元
内容简介
本书全面讲述了光纤通信的基本理论和应用,主要内容包括:光纤通信系统的组成;光纤(光缆)结构、类型与传输特性,光纤的连接;光无源器件原理与应用;光源、光源调制与光发送机原理和性能指标;光检测器原理,光接收机的组成、原理和性能;光放大及其应用;SDH体系和数字光纤传输系统设计与性能指标;波分复用的原理与技术;SDH传送网,光传送网(OTN),自动交换光网络(ASON),光城域网技术,光接入网结构与应用等。
本书力求在光纤通信系统的原理、应用、设计等方面提供必要的信息,可以作为通信工程、电子信息工程和光电信息工程等相近专业的本科教学用书和光纤通信的技术培训教材,也可作为一般工程技术人员的参考用书。
图书目录
第1章 概述
第2章 光纤光缆
第3章 光无源器件
第4章 光源与光发送机
第5章 光检测器与光接收机
第6章 光放大器
第7章 SDH与数字光纤传输系统
第8章 光波以分复用
第9章 光网络
参考文献
同名图书信息
书 名:光纤通信
作者:卜爱琴
出版社:北京师范大学出版集团,北京师范大学出版社
出版时间:2009年08月
ISBN: 9787303103300
开本:16开
定价:26元
内容简介
《光纤通信》共分10章:第1章介绍光纤通信的发展现状、光纤通信的基本组成、光纤通信的特点及发展趋势。第2章介绍光纤的结构和分类、光纤的导光原理、光纤的损耗和色散特性、光缆的结构和种类以及光缆的型号。第3章介绍光缆线路的敷设、光纤光缆的接续与成端、光缆线路的测试以及光缆线路的维护。
目录
第4章介绍光源器件的工作原理、基本结构和工作特性。
第5章介绍光电检测器的工作原理、基本结构和工作特性。
第6章介绍无源光器件的种类、作用、主要性能及应用。
第7章介绍PDH光传输系统,包括光发射机和光接收机的组成、工作原理和主要性能指标,光中继器和光放大器的组成与应用、光纤通信常用线路码型及中继距离的计算。
第8章介绍SDH的基本概念、速率与帧结构,SDH的同步复用与映射原理、SDH开销、SDH设备的逻辑功能描述、SDH传送网与自愈网、SDH网同步、网络传输性能及华为OptiX OSN 2500光传输设备。
第9章介绍光波分复用系统,包括密集波分系统(DWDM)的概念和特点,DWDM的基本类型、DWDM系统的基本结构和工作原理、华为OptiX BSW 320GDwDM设备。
第10章介绍光纤通信实训,包括光纤与光缆的接续、光缆交接箱与ODF架的成端、0TDR的使用与光纤的测试、光纤通信系统误码的测试、光发射机和光接收机性能参数的测试及SDH设备的维护。
同名图书信息
光纤通信
作者:刘世安,彭小娟主编
出 版 社:电子工业出版社
出版时间:2010-1-1
开本:16开
I S B N :9787121100239
定价:¥29.00
内容简介
本书全面系统地介绍了光纤通信的基础知识,包括光纤通信系统的组成、光纤和光缆、光纤通信的基本器件、光发射机和光接收机、光纤通信系统与设计、SDH技术、波分复用技术、光纤通信新技术和光纤通信常用仪表,在相关章节附有实验实训内容。
本书紧扣行业标准和规范,具有较强的实用性和针对性,既可作为高职高专院校通信、电子信息类相关专业的教材,也可作为光纤通信技术培训用书,并可作为技能鉴定的参考用书。
目录
第1章 光纤通信概论
第2章 光纤和光缆
第3章 光纤通信的基本器件
第4章 光发送机和光接收机
第5章 光纤通信系统与设计
第6章 SDH 技术
第7章 波分复用技术
第8章 光纤通信新技术
第9章 常用光纤通信仪表
同名图书信息
作者:刘增基书 名:光纤通信
出版社:西安电子科技大学出版社
出版时间:2008.12
ISBN: 7560610290
开本:16开
定价:23元
内容简介
本书全面地介绍了光纤通信系统的基本组成;光纤和光缆的结构和类型,光纤的传输原理和特性,光纤特性的测量;光源、光检测器和光无源器件的类型、原理和性质;光端机的组成和特性;数字光纤通信系统(PDH和SDH);模拟光纤通信系统,包括副载波复用光纤通信系统;光纤通信的若干新技术,如光纤放大器、光波分复用技术、光交换技术、光孤子通信、相干光通信技术、光时分复用技术等;光纤通信网络,包括单波长的SDH传送网,多波长的WDM全光网和光接入网。本书在内容上力求理论上的系统性以及技术上的新颖性和实用性。
目录
第一章 概论
第二章 光纤和光缆
第三章 通信用光器件
第四章 光端机
第五章 数字光纤通信系统
第六章 模拟光纤通信系统
第七章 光纤通信新技术
第八章光纤通信网络
附录A SDH系统光接口标准
附录B PDH系统光线路设备的实例
附录C VSB-AM/SCM系统光链路性能实例
参考文献
图书信息
书名:光纤通信(高职高专教育)/普通高等教育十五国家级规划教材
ISBN:704012623
作者:林达权
出版社:高等教育出版社
定价:20
页数:1
出版日期:2003-8-1
版次:1
开本:现货
包装:平装
简介:《光纤通信》一书是普通高等教育“十五”国家级规划教材,适用于高职高专教育。本书的特点是以宽带通信为中心,理论与实践紧密结合。
本书介绍了光纤通信基本原理、准同步光纤通信原理、同步光纤通信和密集波分复用原理等相关知识。
本书在编写过程中充分考虑了高职高专教育特色,特邀了实践经验丰富的现场工程师参加编写。本书概念清晰、通俗易懂,注重新知识、新技术内容的介绍。
目录:
第一部分光纤光缆和光纤通信的基本器件
第1章概论
1.1 光纤通信发展的几个亮点
1.2 光纤通信系统的组成
1.3 光纤通信系统所涉及的光纤光缆和器件
1.4 光纤通信的优点
1.5 光纤通信的发展趋势
小结
复习思考题
第2章
光纤光缆
2.1光纤光缆的结构
2.2光纤的导光原理
2.3光纤的传输特性
2.4单模光纤和多模光纤
2.5光缆线路敷设
2.6光缆的接续
小结
复习思考题
第3章
光纤参数的测试
3.1 测试项目和要求
3.2 光纤衰减常数的测量
3.3 单模光纤色散特性的测试
3.4 多模光纤衰减常数的测试
3.5 多模光纤带宽的测试
小结
复习思考题
第4章
光源
4.1引言
4.2 半导体的发光机理
4.3 半导体激光器LD
4.4 发光二极管LED
小结
复习思考题
第5章
光检测器
5.1 作用与要求
5.2 PN结形光电二极管
5.3 PIN光电二极管
5.4雪崩光电二极管
小结
复习思考题
第6章光放大器
6.1 光放大器的类型
6.2掺铒光纤放大器的组成
6.3 掺铒光纤放大器的工作原理
6.4 光放大器的应用场合
小结
复习思考题
第7章
光无源器件
7.1 光纤活动连接器
7.2 光衰减器
7.3 光波分复用器
7.4 其它无源器件
小结
复习思考题
第二部分 准同步(PDH)光纤通信原理
第8章
长途光缆通信系统介绍
8.1长途光缆通信系统的组成
8.2PDH光缆通信系统组成举例
小结
复习考思题
第9章复用设备的工作原理
9.1PCM端机方框简图
9.2基群复用设备
9.3 高次群复用设备的工作原理
小结
复习思考题
第10章光端机的工作原理
10.1概述
10.2光端机方框组成
小结
复习思考题
第11章 光端机设备举例
11.1概述
11.2OPTIMUX-H型设备方框组成
11.3OPTIMUX-H型设备机架组成
11.4手持终端
小结
复习思考题
第三部分 同步(SDH)光纤通信和密集波分复用(DWDM)原理
第12章概述
12.1PDH存在的问题
12.2SDH的主要特点
12.3SDH工作波长区和比特率
小结
复习思考题
第13章 帧结构
13.1基本帧结构
13.2STM—N帧结构
13.3STS—N帧结构
小结
复习思考题
第14章SDH复用原理
14.1基本复用结构
14.2STM—1信号的形成
14.3STM—N信号的形成
14.4指针
14.5开销字节
小结
复习思考题
第15章同步设备参考逻辑功能框图
15.1 复合功能(CF)
15.2 单元功能(EF)
15.3 辅助功能
15.4 复用过程与参考模型的对应关系
小结
复习思考题
第16章 接口
16.1 光接口
16.2 电接口
小结
复习思考题
第17章基本网络单元的工作原理
17.1终端复用设备
17.2上/下路复用设备(ADM)
17.3网络转换设备
17.4交叉连接设备(SDXC)
小结
复习思考题
第18章SDH传送网
18.1SDH传送网
18.2SDH网络结构
18.3SDH网的物理拓朴
18.4自愈网
小结
复习思考题
第19章光波分复用
19.1 光波分复用概述
19.2 光波分复用的基本原理
19.3 光波分复用器
19.4 ZXWM-32密集波分复用设备
19.5IP over WDM技术
19.6当前要发展第三代光纤通信
小结
复习思考题
第20章光传输系统的操作维护
20.1ZXSM-2500光传输设备系统结构
20.2ZXSM-2500光传输设备硬件系统
20.3ZXSM-2500光传输设备网管系统
20.4网管系统的功能
20.5设备安装调试流程
20.6ZXSM-150/600/2500设备调测
小结
复习思考题
第21章光纤通信与相关学科
21.1 光纤通信与计算机技术
21.2 光纤通信与交换技术
21.3 光纤通信与数字通信
21.4 光纤通信与用户宽带接入网
小结
复习思考题
附录:中英文索引
参考文献
图书信息
书名:光纤通信 - - 通信用光纤、器件和系统(21世纪信息与通信技术教程)
ISBN:711512300
作者:美国光学学会Michael Bas
出版社:人民邮电出版社
定价:37
页数:330
出版日期:2004-7-1
版次:1
开本:16开
包装:
简介:光纤通信领域所涉及的光纤、光放大器、波分复用和光分/插复用等关键技术的相继问世,使光纤通信领域中发生了一场又一场技术革命。光纤具有巨大的带宽资源,成为通信系统首选的传输媒质;光放大器代替了光-电-光中继器,实现了点到点的全光通信:波分复用不仅使单根光纤的传输容量增加了几倍、几十倍乃至几百倍,而且实现了多种不同类型的通信业务同时在一根光纤上传输;光分/插复用实现了信息在光域上的传送、路由的选择与交换,从而避免出现电子瓶颈的影响,完全满足了未来通信的高速率、大容量、远距离的全光通信要求。为了满足光纤通信日新月异的发展需要,受人民邮电出版社的委托,我们集体翻译了这本《光纤通信》技术专著,以使中国广大从事通信工作的读者能对光纤通信的基本概念、光纤结构、光器件工作原理、光网络组网技术和光纤通信新技术等内容有所了解。
Michael Bass是美国佛罗里达大学光学学院/光学与激光研究和教育中心光学、物理、电子和计算机工程教授。他是从Carnegie-Mellon获得其物理学学士学位,从Michigan大学获得其物理学硕士学位和博士学位的。
本书是由美国光学学会组织的18名世界著名的光纤通信专家集体编写的一本介绍通信用光纤、器件和系统的最新研究成果的专著。书中全面地介绍了光纤通信技术领域中所涉及到的各个分支,如光纤、光纤通信技术、光纤非线性效应、光纤通信用光源、调制器和探测器、光纤放大器、光纤通信线路、光纤通信系统中的光孤子、耦合器、合(分)波器、光纤布拉格光栅、组网微光器件、半导体光放大器、光时分复用通信网、光波分复用(WDM)光纤通信网、光纤通信标准等具体技术内容。
本书内容翔实、技术新颖,既有理论分析计算,又有大量应用实例。由于本书的作者都是光纤通信领域国际知名的专家,所以本书是一本既充分展现作者各自研究专长,又凝聚作者集体智慧的高水平的技术专著。它可供从事光纤生产和工程应用以及从事光纤通信研究的技术人员使用,也可作为高等院校光纤通信技术及相关专业师生的教学参考书。
目录:
第1章 光纤与光纤通信
1.1 术语表
1.2 引言
1.3 工作原理
1.4 光纤色散与衰减
1.4.1 衰减
1.4.2 模间色散
1.4.3 材料色散
1.4.4 波导色散和折射率分布色散
1.4.5 描述光纤的归一化变量
1.4.6 光纤色散的计算
1.5 光纤的偏振特性
1.6 光纤的光学性能和机械性能
1.6.1 衰减测量
1.6.2 色散与带宽测量
1.6.3 光纤色散的位移与平坦
1.6.4 可靠性的评价
1.7 光纤通信
1.7.1 点到点线路
1.7.2 先进的传输技术
1.8 光纤的非线性光学性能
1.8.1 受激散射过程
1.8.2 脉冲压缩与光孤子传输
1.8.3 四波混频
1.8.4 光纤中的光折射非线性
1.9 光纤材料:化学与制造
1.9.1 常用光纤的制造
1.9.2 掺杂剂化学
1.9.3 其它制造方法
1.9.4 红外光纤制造
1.10 参考文献
1.11 进一步阅读的资料
第2章 光纤通信技术及系统概述
2.1 引言
2.2 基本技术
2.2.1 光纤
2.2.2 发射光源
2.2.3 光探测器
2.3接收机灵敏度
2.4 速率和距离限制
2.4.1 提高速率
2.4.2 更长的中继距离
2.5 光放大器
2.5.1 半导体放大器和光纤放大器的比较
2.5.2 光放大器在通信中的应用
2.6 光纤网络
2.7 光纤中的模拟传输
2.7.1 载噪比(CNR)
2.7.2 光纤中的模拟视频传输
2.7.3 非线性畸变
2.8 技术和应用方向
2.9 参考文献
第3章 光纤的非线性效应
3.1 光纤非线性光学的关键问题
3.2 自相位调制和交叉相位调制
3.3受激拉曼散射
3.4受激布里渊散射
3.5 四波混合
3.6 结论
3.7 参考文献
第4章 光纤通信系统用的光源. 调制器和探测器
4.1 引言
4.2 双异质结结构激光二极管
4.2.1 一个密度反转注入有源区
4.2.2 在有源层平面内的载流子的限制
4.2.3 在有源层附近的光的限制
4.2.4 限制载流子注入条形几何结构
4.2.5 光的横向限制
4.2.6 传导光沿着条形方向上的后向反射
4.2.7 安装使光从侧面发出
4.2.8 适合封装在一个密封盒
4.2.9 光纤尾纤连接
4.2.10 寿命
4.3 激光二极管的工作特性
4.3.1 激光器阈值
4.3.2 光输出与电流输入(L-I曲线)
4.3.3 温度与激光器性能的关系
4.3.4 发光的空间特性
4.3.5 激光器光的光谱特性
4.3.6 偏振
4.4 激光二极管的瞬态响应
4.4.1 开通延迟
4.4.2 弛豫振荡
4.4.3 调制响应和增益饱和
4.4.4 频率啁啾
4.5 激光二极管的噪声特性
4.5.1 相对强度噪声(RIN)
4.5.2 信噪比(SNR)
4.5.3 多模激光器的模分配噪声
4.5.4 相位噪声一线宽
4.5.5 外部光反馈和相干破坏
4.6 量于阱激光器和应变激光器
4.6.1 量子阱激光器
4.6.2 应变层量子阱激光器
4.7 分布反馈(DFB)和分布布拉格反射器(DBR)激光器
4.7.1 分布的布拉格反射器(DBR)激光器
4.7.2 分布反馈(DFB)激光器
4.8 发光二极管(LED)
4.8.1 面发光LED
4.8.2 边发光LED
4.8.3 LED的工作特性
4.8.4 瞬态响应
4.8.5 驱动电路和封装
4.9 垂直腔表面发光激光器(VCSEL)
4.9.1 量子阱的数量
4.9.2 镜面反射率
4.9.3 电注入
4.9.4 发射光的空间特性
4.9.5 光输出与电流输出
4.9.6 光谱特性
4.9.7 偏振
4.9.8 其它波长的VCSEL
4.10 锯酸锂调制器
4.10.1 电-光效应
4.10.2 相位调制
4.10.3 Y形干涉型(马赫—曾德尔)调制器
4.10.4 高速工作
4.10.5 插入损耗
4.10.6 偏振无关
4.10.7 光反射率和光损伤
4.10.8 δ-β反向调制器
4.11 光纤系统用电吸收调制器
4.11.1 电吸收强度调制
4.11.2 在半导体中施加一个电场
4.11.3 集成的调制器
4.11.4 工作特性
4.11.5 QW中的电吸收的先进概念
4.12 电-光和电折射半导体调制器
4.12.1 半导体中的电-光效应
4.12.2 半导体中的电折射
4.12.3 半导体干涉型调制器
4.13 PIN二极管
4.13.1 典型的几何形状
4.13.2 灵敏度(响应度)
4.13.3 速度
4.13.4 暗电流
4.13.5 光电二极管的噪声
4.14 雪崩光电二极管. MSM探测器和肖特基二极管
4.14.1 雪崩探测器
4.14.2 MSM探测器
4.14.3 肖特基光电二极管
4.15 参考文献
第5章 光纤放大器
5.1 引言
5.2 掺稀土元素放大器的结构和工作
5.2.1 泵浦配置和最佳的放大器长度
5.2.2 工作状态
5.3 EDFA的物理结构和光的相互作用
5.3.1 EDFA的能级
5.3.2 增益形成
5.3.3 EDFA的泵浦波长的选择
5.3.4 噪声
5.3.5 增益平坦
5.4 其它稀土元素系统中的增益形成
5.4.1 掺镨光纤放大器(PDFA)
5.4.2 掺铒/镱光纤放大器(E/YDFA)
5.5 参考文献
第6章 光纤通信线路(电信. 数据通信和模拟)
6.1 引言
6.2 品质因数:SNR. BER. MER和SFDR
6.3 线路功率预算分析:安装损耗
6.3.1 传输损耗
6.3.2 衰减与波长的关系
6.3.3 连接器损耗和接头损耗
6.4 线路功率预算分析:光功率代价
6.4.1 色散
6.4.2 模分配噪声
6.4.3 消光比
6.4.4 多路串扰
6.4.5 相对强度噪声(RIN)
6.4.6 抖动
6.4.7 模噪声
6.4.8 辐射引起的损耗
6.5 参考文献
第7章 光纤通信系统中的光孤子
7.1 引言
7.2 经典孤子的特性
7.3 光孤子的性能
7.4 经典的光孤子传输系统
7.5 频率导向滤波器
7.6 可调频率导向滤波器
7.7 波分复用
7.8 色散管理光孤子
7.9 波分复用色散管理光孤子传输
7.10 结论
7.11 参考文献
第8章 熔锥光纤耦合器. 波分复用器和解复用器
8.1 引言
8.2 波长无关
8.3 波分复用
8.4 1xN光功率分配器
8.5 开关和衰减器
8.6 马赫-曾德尔器件
8.7 偏振器件
8.8 结论
8.9 参考文献
第9章 光纤布拉格光栅
9.1 术语表
9.2 引言
9.3 光敏性
9.4 布拉格光栅的性能
9.5 光纤光栅的制造
9.6 光纤光栅的应用
9.7 参考文献
第10章 组网的微光器件
10.1 引言
10.2 通用的器件
10.3 网络功能
10.3.1 衰减器
10.3.2 光功率分配器和方向耦合器
10.3.3 隔离器
10.3.4 环形器
10.3.5 复用器/解复用器/双工器
10.3.6 机械开关
10.4 子器件
10.4.1棱镜
10.4.2 光栅
10.4.3 滤波器
10.4.4 光束分路器
10.4.5 法拉第旋转器
10.4.6 偏振器
10.4.7 自聚焦棒透镜
10.5 器件
10.5.1 衰减器
10.5.2 功率分配和方向耦合器
10.5.3 隔离器和环路器
10.5.4 复用器/解复用器/双工器
10.5.5 机械开关
10.6 参考文献
第11章 半导体光放大器和波长转换
11.1 术语表
11.2 为什么要进行光放大
11.2.1 光纤放大器
11.2.2 半导体放大器
11.3 为什么要进行光波长转换
11.3.1 改变光波长的方案
11.3.2 半导体光波转换器
11.4 参考文献
第12章 光时分复用通信网络
12.1 术语表
12.1.1 定义
12.1.2 缩与
12.1.3 符号
12.2 引言
12.2.1 基本概念
12.2.2 取样
12.2.3 抽样定理
12.2.4 插入
12.2.5 解复用——发射机和接收机的同步
12.2.6 数字信号——脉冲编码调制
12.2.7 脉冲编码调制
12.2.8 模-数转换
12.2.9 二进制数字和线路编码的光表示方法
12.2.10 定时恢复
12.3 时分复用和时分多址
12.3.1 概述
12.3.2 时分多址
12.3.3光域TDMA
12.3.4 时分复用
12.3.5 帧与体系
12.3.6 SONET和频率调整
12.4 器件技术介绍
12.4.1 光时分复用——串行与并行
12.4.2 器件技术——发射机
12.4.3 法布里-珀罗激光器
12.4.4分布反馈激光器
12.4.5 锁模激光器
12.4.6 直接调制或间接调制
12.4.7 外调制
12.4.8 电光调制器
12.4.9 电吸收调制器
12.4.10 光时钟恢复
12.4.11 解复用的全光交换
12.4.12 接收机系统
12.4.13 超高速光时分复用光线路——一个论文实例
12.5 总结与展望
12.6 进一步阅读的资料
第13章 波分复用(WDM)光纤通信网络
13.1 引言
13.1.1 光纤带宽
13.1.2 WDM技术介绍
13.2 光纤损伤
13.2.1 色散
13.2.2 光纤非线性
13.2.3 色散补偿和色散管理
13.3 WDM网络的基本结构
13.3.1 点到点线路
13.3.2 波长路由网络
13.3.3 WDM星. 环和网状结构
13.3.4 网络重构性
13.3.5 电路交换和数据包交换
13.4 WDM网络中的掺铒光纤放大器
13.4.1 EDFA级联的增益峰化
13.4.2 EDFA增益平坦
13.4.3 快速动率瞬变
13.4.4 超宽带EDFA
13.5 动态信道功率均衡
13.6 WDM中的串扰
13.6.1 非相干串扰
13.6.2 相干串扰
13.7 总结
13.8 致谢
13.9 参考文献
第14章 红外光纤
14.1 引言
14.2 非氧化物和重金属氧化物玻璃IR光纤
14.2.1 HMFG光纤
14.2.2 锗酸盐光纤
14.2.3 硫化物光纤
14.3 晶体光纤
14.3.1 PC光纤
14.3.2 SC光纤
14.4 空心波导
14.4.1 空心金属和塑料波导
14.4.2 空心玻璃波导
14.5 总结和结论
14.6 参考文献
第15章 光纤传感器
15.1 引言
15.2 非本征法布里-珀罗干涉传感器
15.3 本征法布里-珀罗干涉传感器
15.4 光纤布拉格光栅传感器
15.4.1 工作原理
15.4.2 布拉格光栅传感器制造
15.4.3 布拉格光栅传感器
15.4.4 布拉格光栅应变传感器的限制因素
15.5 长周期光栅传感器
15.5.1 工作原理
15.5.2 LPG制造过程
15.5.3 长周期光栅的温度敏感性
15.6 传感方案的比较
15.7 结论
15.8 参考文献
15.9 进一步阅读的资料
第16章 光纤通信标准
16.1 引言
16.2 ESCON
16.3 FDDI
16.4 光纤通道标准
16.5 ATM/SONET
16.6吉比特以太网
16.7 参考文献

⑺ 光纤通信原理及应用 电子工业出版 编著 杨英杰 赵小兰,课后答案谁有啊

光纤跳线和同轴电缆相似,只是没有网状屏蔽层。中心是光传播的玻璃芯。在多模光纤中内,芯容的直径是15μm~50μm,大致与人的头发的粗细相当。而单模光纤芯的直径为8μm~10μm.芯外面包围着一层折射率比芯低的玻璃封套,以使光纤保持在芯内。再外面的是一层薄的塑料外套,用来保护封套。光纤跳线是指与桌面计算机或设备直接相连接的光纤,以方便设备的连接和管理。用来做从设备到光纤布线链路的跳接线或两个设备之间的连接线。有较厚的保护层,一般用在光端机和终端盒之间的连接。

⑻ 关于光纤通信专业的毕业论文!

码分多址蜂窝移动通信系统
CDMA技术的优点及问题及越区切换
由于CDMA技术本身所固有的许多特点,使它非常适合于数字蜂窝移动通信系统。它的优点主要表现在如下10个方面。
1.语音激活技术
统计结果表明,人们在通话过程中,只有35%的时间在讲话,另外65%的时间处于听对方讲话、话句间停顿或其他等待状态。在CDMA数字蜂窝移动通信系统中,所有用户共享同一个无线频道,当某一用户没有讲话时,该用户的发射机不发射或少发射功率,其他用户所受到的干扰都相应地减少。为此,在CDMA系统中,采用相应的编码技术,使用户的发射机所发射的功率随着用户语音编码的需求来作调整。当用户讲话时语音编码器输出速率高,发射机所发射的平均功率大;当用户不讲话时语音编码器输出速率很低,发射机所发射的平均功率很小,这就是语音激活技术。在蜂窝移动通信系统中,采用语音激活技术可以使各用户之间的干扰平均减少65%。也就是当系统容量较大时,采用语音激活技术可以使系统容量增加约3倍,但当系统容量较小时,系统容量的增加值要降低。在频分多址、时分多址和码分多址三种制式中,唯有码分多址可以方便而充分地利用语音激活技术。如果在频分多址和时分多址制式中采用语音激活技术,其系统容量将有不同程度的提高,但二者都必须增加比较复杂的功率控制系统,而且还要实现信道的动态分配,其结果必然带来时间延迟和系统复杂性的增加,而在CDMA系统中实现这种功能就相对简单得多。
2.扇区划分技术
扇区划分技术是位于蜂窝小区中心的基站利用天线的定向特性把蜂窝小区分成不同的扇面,如下图所示。常用的方式有
利用120°圆形覆盖的定向天线组成的三叶草形无线区(图(a));利用60°扇形覆盖的定向天线组成的三角形无线蜂窝区(图(b));利用120°扇形覆盖的定向天线组成的120°扇形无线蜂窝区(图(c))。

在频分多址和时分多址制式中,在每个蜂窝小区中采用分扇区天线通常只能起到减少干扰的作用,不能增加系统容量。而在码分多址制式蜂窝移动通信系统中,利用120°扇形覆盖的定向天线把一个蜂窝小区划分成三个扇区(如图(c)所示)时,平均处于每个扇区中的移动用户是该蜂窝的三分之一,相应的各用户之间的多址干扰分量也减少为原来的三分之一左右,从而系统的容量将增加约3倍(实际上,由于相邻扇区之间有重叠,一般只能提高到2.55倍)。
3.高系统容量
由于码分数字蜂窝移动通信系统可以通过采用上述两种方法以及其他技术直接地或间接地提高系统容量,使码分系统的容量比模拟FDMA系统及数字GSM系统都要高出若干倍。理论分析表明,在相同的频率带宽下,对于宽带码分系统,每个蜂窝小区所能提供的信道数是模拟FDMA系统的20倍左右,是数字GSM系统的10倍左右;对于窄带码分系统来说,其系统容量的优势有所
降低,但也是模拟FDMA系统的10倍以上,是数字GSM系统的3倍以上。由此可以看出,在移动通信事业迅猛发展的今天,移动用户量日益猛增,而频率资源日趋紧张,采用码分数字蜂窝移动通信系统是势在必行。
4.软容量
在模拟频分系统和数字时分系统中,通信信道是以频带或时隙的不同来划分的,每个蜂窝小区提供的信道数一旦固定,很难改变。当没有空闲信道时,系统会出现忙音,移动用户不可能再呼叫其他用户或接收其他 用户的呼叫。当移动用户在越区切换时,也很容易出现通话中断现象。在码分系统中,信道划分是靠不同的码型来划分的,其标准的信道数是以一定的输入、输出信噪比为条件的,当系统中增加一个通话用户时,所有用户输入、输出信噪比都有所下降,但不会出现因没有信道而不能通话的现象。例如对一个标准信道数为40的扇区来说,当第41个用户呼叫时,对所有移动用户的影响是接收机的输入信噪比下降10lg(41/40)=0.1dB,即使再增加两个用户通信,比标准多三个,其影响是所有接收机的输入信噪比下降10lg[(40+3)/40]=2.3dB,这使该扇区内的移动用户信息数据的误码率有所升高,通话质量有所下降,但增加的三个用户都不会发生因无信道而出现忙音的现象。这对于解决通信高峰期时的通信阻塞问题和提高用户越区切换的成功率无疑是非常有益的。
5.软切换
当移动用户从一个小区(或扇区)移动到另一个小区(或扇区)时,移动用户从一个基站的管辖范围移动到另一个基站的管辖范围,通信网的控制系统为了不中断用户的通信就要做一系列的调整,包括通信链路的转换,位置更新等,这个过程就叫越区切换。越区切换实现了小区(或扇区)间的信道转换,是保证一个正在处理或进行中的呼叫的不中断运行。
在模拟FDMA系统和数字TDMA系统中,移动用户在越区切换时,需要在另一个小区(或扇区)寻找空闲信道,当该区有空闲信道时才能切换。这时移动台的收、发频率等都要作相应的调整,称之为硬切换。这种切换过程是首先切断原通话通路,然后与新的基站接通新的通话链路。这种先断后通的切换方式势必引起通信的短暂间断。另外由于通信环境的影响,在两小区的交叠区域内,移动台接收到的两个基站发来的信号的强度有时会出现大小交替变化,从而导致越区切换的“乒乓”效应,用户会听到“咔嗒”声,对通信产生不利的影响。此外切换时间也较长。
在CDMA系统中,由于所有的小区(或扇区)都可以使用相同的频率,小区(或扇区)之间是以码型的不同来区分的。当移动用户从一个小区(或扇区)移动到另一个小区(或扇区)时,不需要移动台的收、发频率切换,只需在码序列上作相应地调整,称之为软切换。软切换的优点在于首先与新的基站接通新的通话,然后切断原通话链路。这种先通后断的切换方式不会出现“乒乓”效应,并且切换时间也很短。另外由于CDMA系统有“软容量”的优点,越区切换的成功率要远大于模拟FDMA系统和数字TDMA系统,尤其是在通信的高峰期。
6.特有的分集形式
在CDMA系统中,由于采用了宽带传输,使它具有了特有的频率分集特性,即当信道具有选频特性时,对CDMA系统中信息传输影响较小。
CDMA系统有分离多径信号的能力,可以实现路径分集。由于移动通信环境的复杂和移动台的不断运动,接收到的信号往往是多个反射波的叠加,形成多径衰落。在模拟FDMA系统和数字TDMA系统中,为了解决多径衰落对通信带来的不利影响,采取了包括增加发射功率等一系列措施。在CDMA系统中,可以采用它特有的技术(如瑞克(RAKE)接收技术),将多径信号分离出来,
分别接收,这样不但克服了多径衰落对通信带来的不利影响,还等效增加了接收有用信号的功率(或者说等效增加了发射信号的功率)。由于这种特有的分集形式以及其他措施,使CDMA系统的发射功率相对很低。
除了这种特有的分集形式外,CDMA系统还采用其他分集技术,如空间分集、时间分集等,使CDMA系统的性能更加提高。
7.与窄带系统(模拟系统)共存
当码分系统与窄带系统(例如模拟FDMA系统)工作于同一频段时,由于在CDMA系统中采用了宽带传输方式,并且发射功率较低,平均落到每个窄带系统中的带宽内的干扰信号功率很小。尤其是宽带CDMA系统,其对窄带系统的影响可以忽略不计,窄带系统对CDMA系统的影响可以等效为“人为干扰”,由于CDMA系统特有的抗干扰能力,把这个干扰降低到了最低限度。
这个干扰的存在只使得CDMA系统的容量降低,但不妨碍CDMA系统的正常工作。CDMA系统的带宽越宽,两个系统共存时相互间的影响越小,反之则越大。这给CDMA系统与模拟窄带系统双模式共存以及由模拟移动通信系统向数字移动通信系统平滑过渡提供了可能性。
8.良好的保密能力
码分数字移动通信系统的体制本身就决定了它具有良好的保密能力。首先在CDMA数字移动通信系统中必须采用扩频技术,使它所发射的信号频谱被扩展的很宽,从而使发射的信号完全隐蔽在噪声、干扰之中,不易被发现和接收,因此也就实现了保密通信。其次在通信过程中,各移动用户所使用的地址码各不相同,在接收端只有完全相同(包括码型和相位)的用户才能接收到相应的发送数据,对非相关的用户来说是一种背景噪声,所以CDMA系统可以防止有意或无意的窃取,具有很好的保密性能。
9.发射功率低、移动台的电池使用寿命长
由于在码分数字移动通信系统中,可以采用许多特有的技术来提高系统的性能,所要求的发射功率大大降低,从而对电池的体积减小和使用寿命增长都是非常有益的,对移动台整机的体积减小和成本的降低也是有利的。
10.频率分配和管理简单
在模拟频分多址和数字时分多址移动通信制式中,频率分配和管理是一项比较复杂的技术,而动态频率分配就更加复杂。在码分数字移动通信体制中,所有移动用户可以只用一个频率,不需要动态分配,其频率分配和管理都很简单。
以上是码分数字移动通信系统的主要优点,但同时它也存在需要人们攻克的难点。在CDMA数字移动通信系统中,突出的问题是远近效应。所谓远近效应是指距接收机近的用户对距离远的用户的干扰。
在CDMA数字移动通信系统中,由于在同一蜂窝的各用户使用的是同一频率,共享一个无线频道。由于路途衰耗的原因,距基站近的移动台所发射信号有可能完全淹没距离远(例如处于蜂窝区边缘)移动台所发送来的信号,如果不采取有力的措施,这将使基站无法正常接收远距离移动台所发送来的信号。而在模拟频分多址和数字时分多址移动通信系统中,由于各信道使用不同频率或时隙,且各信道之间有相应的保护带宽或保护时间,故远近效应问题不太突出。
当前,在CDMA系统中为解决这个问题所采取的措施主要有两种:第一种是信号处理方法,在接收端用信号处理的方法,依次逐个抵消掉较强信号,直到能解调出所需信号为止,但由于这种方法运算量很大及当前器件的运算速度等问题,还不能实际使用;当移动台距基站近时,其发射功率减小,当距离远时,发射功率增大,从而保证在基站所收到的每个移动台的信号功率相等,消除远近效应的影响,使系统处于最佳运行状态。功率控制技术已在实际当中采用,它是CDMA数字移动通信系统中的最关键技术之一。功率控制技术很复杂,其所控制的范围和精度直接影响到整个系统的性能,如偏差过大,不仅系统容量迅速下降,而且通信质量也将急剧下降。
码分数字蜂窝移动通信网的网路结构如下图所示。

它是一个抽象的平面图,其实现将随着功能实体在各个物理单元中的分布情况不同而有所改变。各部分的作用和功能如下:
1.移动台(MS)
其包括手机和车台等,是用户端终接无线信道的设备;通过空中无线接口Um,给用户提供接入网路业务的能力。
2.基站(BS)
其设于某一地点,是服务于一个或几个蜂窝小区的全部无线设备的总称。它是在一定无线覆盖区域内,由移动交换中心(MSC)控制,与移动台通信的设备。
3.移动交换中心(MSC)
是完成对位于它所服务的区域中的移动台进行控制、交换的功能实体,也是与其他MSC或其他公用交换网之间的用户业务的自动接续设备。
4.归属位置寄存器(HLR)
是为了记录的目的而指定用户身份给它的一种位置登记器。登记的内容是用户的信息(例如ESN、DN、IMSI(MSI)、服务项目信息、当前位置、批准有效的时间段等)。
5.拜访位置寄存器(VLR)
是MSC检索信息用的位置寄存器。例如处理发至或来自一个拜访用户的呼叫信息——用户号码、向用户提供本地用户的服务等参数。
6.设备识别寄存器(EIR)
是为了记录的目的而分配用户设备身份给它的寄存器;用于对移动设备的识别、监视、闭锁等。
7.鉴权中心(AC)
是一个管理与移动台相关的鉴权信息的功能实体。
8.消息中心(MC)
是一个存储和转送短消息的实体。
9.短消息实体(SME)
是合成和分解短消息的实体。有时HLR、VLR、EIR及AC位于MSC之中,SMC位于MSC、HLR或MC之中。
码分数字蜂窝移动通信网不是公共交换电话网(PSTN)的简单延伸,它是与PSTN、PSPDN、ISDN等并行的业务网。由于移动用户大范围的移动,该网在管理上应相对的独立。
通信系统的通信容量可以用不同的表征方法进行度量。对于点对点的通信系统而言,系统的通信容量可以用信道效率来度量,即用在给定的频率带宽中所能提供的最大信道数目进行衡量。一般地说,在给定的频率带宽中所能提供的信道数目越大,系统的通信容量也越大。在蜂窝移动通信系统中,系统的容量有多种衡量方法,如用每小区可用信道数(ch/cell)、每小区每兆赫兹可用
信道数(ch/cell/MHz)、每小区爱尔兰数(Erl/cell)、每平方公里用户数(用户数/km)以及每平方公里每小时通话次数(通话次数h/km)等进行度量。这些表征方法从不同的角度对系统的容量进行衡量,它们之间是有联系的,在一定的条件下可以互相转换。考虑到信道的分配涉及到频率复用和由此而产生的同频干扰问题,一般认为用每小区可用信道数(ch/cell)或每小区每兆赫兹限制CDMA数字蜂窝移动通信系统容量的原因是由于系统中存在多址干扰,即同时通信的移动用户之间的相互干扰。在某个蜂窝小区内,如果有N个用户同时通信,系统必须能提供N个或N个以上的(逻辑)信道。同时通信的用户数N越大,多址干扰越强。N的最大值就是系统容量,即在保证接收所需信号功率与干扰功率的比值大于或等于某一门限值的条件下,该小区同时通信的最大用户数。
首先考虑一般码分通信系统(即暂不考虑蜂窝移动通信系统的特点)的容量。若N个用户同时通信,每个用户的信号都受到其他N-1个用户信号的干扰。假定系统的功率
控制是理想的,即到达接收机的所有N个信号强度都一样,则理论分析表明,此时系统容量为

式中W是CDMA系统所占的有效频谱宽度;Rb是信息数据的速率;Eb是信息数据的一比特能量;N0是干扰(噪声)的功率谱密度(单位赫兹的干扰功率);W/Rb是CDMA系统的扩频增益。当CDMA系统所占的频谱宽度W一定时,它随着信息速率Rb的降低而增大。Eb/N0是比特能量与噪声密度比,其比值取决于系统对误码率或话音质量的要求,并与系统的调制方式和编码方案有关。
例如:N-CDMA系统所占的有效频谱宽度W=1.2288MHz,话音编码速率Rb=8.6kbit/s,若比特能量与噪声密度比Eb/N0=7dB,则N=29.5;若Eb/N0=6dB,则N=37。
结果说明:在满足一定通信要求的前提下,比特能量与噪声密度比Eb/N0越小,系统的容量越大。但在上面的结果中,没有考虑CDMA蜂窝系统的特点,还应该根据其特点对系统容量公式进行修正。
1.采用语音激活技术提高系统容量
统计结果表明,对话的激活期(占空比)d=0.35。也就是,人们在通话过程中平均只有35%的时间在讲话,
另外65%的时间处于听对方讲话、话句间停顿或其他等待状态。在CDMA数字蜂窝移动通信系统中,所有用户共享同一个无线频道,如果采用语音激活技术,使通信中的用户有语音时才发射信号,没有讲话时,该用户的发射机就停止发射功率,那么任一用户话音发生停顿时,其他用户所受到的干扰都会相应地平均减少65%,从而系统容量可以提高到1/d=2.86倍。为此,CDMA数字蜂窝移动通信系统的计算公式变成

式中d是语音占空比(d=0.35)。
2.利用扇区划分提高系统容量
在码分多址制式蜂窝移动通信系统中,利用120°扇形覆盖的定向天线把一个蜂窝小区划分成3个扇区时,处于每个扇区中的移动用户是该蜂窝的三分之一,相应的各用户之间的多址
干扰分量也减少为原来的约三分之一,从而系统的容量将增加约3倍(实际上,由于相邻天线覆盖区之间有重叠,一般能提高到G=2.55倍左右)。为此,CDMA数字蜂窝移动通信系统的计算公式变为

式中G是扇形分区系数(G=2.55)。
3.邻近蜂窝小区的干扰对系统容量的影响
根据码分多址蜂窝移动通信系统的特点,在CDMA蜂窝移动通信系统中,所有用户共享同一个无线频道,即若干个小区内的基站和移动台都工作在相同的频率上。因此,任一小区的移动台都会受到相邻小区基站的干扰,任一小区的基站也都会受到相邻小区移动台的干扰。这些干扰的存在必然会影响系统的容量。其中任一小区的移动台对
相邻小区基站(反向信道)的总干扰量和任一小区的基站对相邻小区移动台(正向信道)的总干扰量是不同的,对系统容量的影响也有所差别,下面分别加以简要说明。
(1)正向信道(由基站到移动台)
在一个蜂窝小区内,基站不断地向所有通信中的移动台发送信号,移动台在接收它自己所需的信号同时,也接收到基站发给所有其他移动台的信号,而这些信号对它所需的信号将形成干扰。当系统采用正向功率
控制技术时,由于路径传播损耗的原因,位于靠近基站的移动台,受到本小区基站所发射的信号干扰比距离远的移动台要大,但受到相邻小区基站的干扰较小;位于小区边缘的移动台,受到本小区基站所发射的信号干扰比距离近的移动台要小,但受到相邻小区基站的干扰较大。移动台最不利的位置是处于3个小区交界的地方,如下图中的X点。
假设各小区中同时通信的用户数都是N,即各小区的基站同时向N个用户发送信号,

当移动用户从一个小区(或扇区)移动到另一个小区(或扇区)时,移动用户从一个基站的管辖范围移动到另一个基站的管辖范围,通信网的控制系统为了不中断通信就要做一系列的调整,包括位置更新、转换通信链路等,这个过程就叫越区切换。
越区切换实现了小区(或扇区)间和频道间的信道转换,保证了一个正在处理或进行中的呼叫的不中断运行。切换是由于无线转播、业务分配、操作和维护激活、设备故障等原因而产生的。例如:
(1)移动台移动至小区的边界,信号强度低到一定程度;
(2)移动台在小区中进入信号强度缝隙中(阴影区),信号恶化到一定程度;
(3)移动交换中心发现一些小区太拥挤,而另一些小区很闲时,可命令拥挤的小区的一些移动台提前切换,以调整各小区的负荷量等等。
对越区切换的基本要求是:
(1)高的切换成功率;
(2)减少系统中不必要的切换;
(3)使用优化的越区切换算法来控制各小区的业务量;
(4)切换速度快,切换经历的时间短;
(5)对话音质量的影响小等。
在CDMA系统中的越区切换有两类,即硬切换(Hard Handoff)和软切换(Soft Handoff)。
硬切换是指移动台在不同频道之间的切换, 这些切换需要移动台变更收发频率,即先切断原来的收发频率,再搜索、使用新的频道。
硬切换会造成通话暂短中断,切换时间较长时(大于200ms),将影响用户通话。
软切换是指移动台在相同的CDMA频道中的切换。软切换不需要移动台变更收发频率,只需要在伪随机码的相位上作一调整。CDMA系统的移动台中有多个RAKE (瑞克)接收机,可以同时接收几个基站发来的信号。当需要切换时,移动台除了与原服
务基站保持通话链路外,还与新的基站建立了通话链路。直到移动台接收到的原基站发来的信号低于一门限时才切断与原基站的通话链路。这种先通后断的软切换保证了通话不会中断。通常所说的软切换中还包含一种更软切换(Softer Handoff)。更软切换是指同一蜂窝小区内不同扇区之间的切换。在两扇区边界,基站和移动台通过分集技术可以同时在两个扇区传输信号。
在软切换过程中,由于移动台中有多个RAKE接收机,移动台开始与目标基站建立通信时,不中断与原服务基站的通信,此时移动台同时与两个基站建立了通话链路。当原服务基站的信号强度低到一门限值时,再切断与原服务基站的通信联系。由于移动台在软切换中不变更收发频率,所以软切换只能在具有相同CDMA频道的小区(或扇区)之间进行切换。
软切换是CDMA系统中特有的一个重要概念。在CDMA蜂窝移动通信系统中,具有相同CDMA频道的各小区使用同一频率,移动台在小区之间移动时不需要像频分或时分系统那样重新分配频率或时隙,这使得软切换成为可能。
在CDMA系统中,一般情况下每个移动台拥有三个以上RAKE接收机,即每个移动台中有多个解调器,这允许移动台同时与两个或多个小区保持通信。
移动台在与基站A通信时,连续监视相邻小区的导频信号强度,任何一个导频信号(如基站B)的强度超过一预定的门限时,立即报告系统。系统则命令基站B建立与移动台的通信,开始软切换。此时移动台同时接收到来自两个基站的通信信号,两路信号密切结合,彼此加强。
在反向链路上,移动交换中心根据基站接收的信号强度确定哪个基站的接收信号更强,从而选择它。
参考文献
[1] 樊昌信,等.通信原理.北京:国防工业出版社
[2] 郭梯云,邬国扬,李建东. 移动通信. 西安:西安电子科技大学出版社
[3] 啜钢 等.移动原理通信与系统[M].北京邮电大学出版社
[4] 段丽.移动通信技术.人民邮电出版社
[5] 韦惠民.蜂窝移动通信技术》.西安电子科技大学出版社
[6] 曹志刚,钱亚生. 现代通信原理. 北京:清华大学出版社
[7] 邓华MATLAB通信仿真及应用实例详解. 北京: 人民邮电大学出版社
[8] 姚东等MATLAB命令大全.北京人民邮电出版

热点内容
涂鸦论文 发布:2021-03-31 13:04:48 浏览:698
手机数据库应用 发布:2021-03-31 13:04:28 浏览:353
版面217 发布:2021-03-31 13:04:18 浏览:587
知网不查的资源 发布:2021-03-31 13:03:43 浏览:713
基金赎回参考 发布:2021-03-31 13:02:08 浏览:489
悬疑故事范文 发布:2021-03-31 13:02:07 浏览:87
做简单的自我介绍范文 发布:2021-03-31 13:01:48 浏览:537
战略地图参考 发布:2021-03-31 13:01:09 浏览:463
收支模板 发布:2021-03-31 13:00:43 浏览:17
电气学术会议 发布:2021-03-31 13:00:32 浏览:731