采矿文献
一定要比较的话是SCI的难些。那什么是SCI、EI检索呢?1论文进入SCI、Ei等国际检索系统的意义1)加大论文信息传播的力度、速度和广度,吸引读者,拓宽国内外的读者面,提高论文乃至期刊在国内外的被引频次;2)引起期刊重视,提高作者论文的采用率;3)推动国际学术交流,促进科学研究工作;4)促进论文编写格式的标准化和规范化,并与国际文献接轨;5)提高论文乃至期刊的社会效益、经济效益;6)提高作者、期刊、工作单位在国内外的学术地位和知名度。2国际六大著名检索系统1)美国《科学引文索引》SCI(见下文)。2)美国《工程索引》Ei(见下文)。3)美国《化学文摘》(ChemicalAbstracts,CA。CA报道的化学化工文献量占全世界化学化工文献总量的98%左右,是当今世界上最负盛名、收录最全、应用最为广泛的查找化学化工文献大型检索工具。4)英国《科学文摘》(ScienceAbstracts,SA;或INSPEC)--《物理文摘》(SectionA-PhysicsAbstracts,PA);--《电子与电气文摘》(SectionB-ElectricalEngineering&ElectronicsAbstracts,EEA);--《计算机与控制文摘》(SectionC-ComputersandControlAbstracts,CCA);--《信息技术》(InformationTechnology,IT)。5)俄罗斯《文摘杂志》(AbstractJournals,AJ)或РЖ(共220余卷),被称为世界三大综合检索统。6)日本《科学技术文献速报》(,CBST;为印刷本,共12分册)。现扩充为大型数据库"日本科学技术情报中心"(,JICST)。被称为世界三大综合检索系统。
② 求 采矿方面的 英文文献及其中文翻译一篇
Coal mine waste water treatment and reuse technology Comparative Study
Digest:Introced the sewage and wastewater processing resources of the latest technologies and processes, analysis and comparison of the three kinds of process options to deal with coal mine waste water system investment and operating costs, and to explore the reverse osmosis water treatment technology in the coal mine waste water treatment application The technical and economic feasibility.Coal mine waste water treatment and reuse of the consolidated operating costs for the :2.185-2 .465 yuan / ton. One membrane of the processing costs as low as: 2.185 yuan / ton. Such prices on drought and water shortage in the Northwest region is very attractive. Of mine waste water recycling, not only can rece the amount of wastewater discharge, but also can make water resource, it should be said, it is a method of water resources in the hope of regeneration, but also our country to achieve sustainable use of water resources in an effective way to .
Key words: reverse osmosis electroplating wastewater recycling。
China's large population and uneven spatial and temporal distribution of freshwater resources, water resources and socio-economic development is not balanced; population growth has increased year after year the demand of water resources, instry's rapid development has become increasingly serious water pollution, thus creating a shortfall of water resources and water pollution are increasing.At present, China's prominent contradiction between water supply and demand, there are more than 300 cities short of water, of which there are 114 cities in serious water shortages. Water supply and demand in China in the 21st century the situation was very serious water crisis will become a question of resources in the most severe punishment of all issues. To resolve this problem, in addition to the scientific management of water resources and optimizing the assigned amount, the high-tech means to bring into full play the role of the use of water resources is also very crucial.
In recent years, China's annual volume of about 400-500 million sewage M3, treated emissions from only 15-25%, e to cross-flow of sewage everywhere, so that all our major sources of water proce different degrees of pollution, a serious deterioration of water environment 【4】 .Therefore, to enhance wastewater treatment, so that not only the discharge standards but also to a large number of reuse, very necessary, which improve the water environment to ease the shortage of water resources, saving precious water resources are very important. Urban and instrial sewage has been the depth of treatment can be used for agricultural irrigation, instrial proction, urban landscape, Urban Green, life miscellaneous, groundwater recharge, and additional surface water in such applications as 【8】.Traditional water treatment technology can eliminate some air pollutants, the COD, BOD and heavy financial and other indicators of reced pollutant emission standards, or miscellaneous safety standards, but can not completely eliminate the drainage contained in the solubility of trace contaminants. Reverse osmosis membrane technology to thoroughly remove these pollutants to achieve the strict sense of the wastewater reclamation. Traditional treatment processes and membrane technology integration can be sewage or waste water into a different water quality standards for reuse water, or make it loop back to use, this would ease the contradiction between supply and demand, but also rece pollution, but also promote the development of environmental protection instry 【6】.
Sewage Wastewater Reuse Technology and Application Overview
The serious deterioration of water environment quality and the rapid economic development, and urgently requires a corresponding resource of sewage waste water technology. In this field of membrane separation technology occupies an important position and role. Membrane separation, as a high-tech in the last 40 years to develop quickly into the instrialization of the process of energy-efficient separation technology.Than 40 years, electrodialysis, reverse osmosis, microfiltration, ultrafiltration, nanofiltration, pervaporation, membrane contact and membrane reactions have been developed in energy, electronics, petrochemicals, pharmaceuticals, chemicals, light instry, food and beverage instry and the daily life and environmental protection Dengjun wide range of applications received, resulting in significant economic and social benefits. The needs of the community to make membrane technology promised born, but also the needs of society to promote the rapid development of membrane technology to membrane technology innovation, technological progress, improve, and become a unit operation, to become integrated in the process of the key 【9】.
1.Continuous membrane filtration technology
Hollow fiber membrane e to large surface area membrane moles of the loading density, so compact equipment; this film made by spinning, simple process, so proction costs are generally lower than the other films: In the absence of support layer may reverse cleaning, exceptional stain resistance of some good cleaning agent on the oxidative tolerance to the emergence of a good film made in large-scale sewage treatment works, the application of hollow fiber membrane has a unique advantage 【7】.
CMF technology is the core of the high anti-pollution film, as well as compatible with membrane cleaning technology, which enables non-stop cleaning membrane cleaning, and thus to achieve a continuous treatment of liquid non-stop to ensure a continuous and efficient operation of equipment.
CMF is currently mainly used in large-scale municipal wastewater treatment plant raw water the depth of the secondary settling tank treatment and reuse, desalination, or large-scale reverse osmosis pretreatment system. Surface water ground water purification, beverages, etc. to clarify the turbidity.
2.Membrane bio-reactor
Membrane bio-reactor is membrane separation technology and bio-technology combined with new technology. Used in the field of sewage waste water treatment using membrane pieces for solid-liquid separation, sludge or impurities interception return to the bio-reactor, handling the drainage of water through the membrane to form a sewage treatment membrane bioreactor system, The role of membrane moles is equivalent to conventional biological wastewater treatment systems in the secondary sedimentation tank 【4】.
MBR used in the film are flat membrane, tubular membrane and hollow fiber membrane, is currently mainly based hollow fiber membrane.
The MBR wastewater treatment, raw water sources have reached a very high water guidelines. This method is not limited to domestic wastewater treatment, MBR technology is also widely used in dyeing wastewater, scouring wastewater, meat processing, sewage water treatment systems. Another feature of MBR systems vary in size, the small device can be used for a family, large-scale installations daily processing capacity of up to tens of thousands of cubic meters.
3.Reverse Osmosis Technology
Reverse osmosis technology is the early 20th century, 60 developed a pressure-driven membrane separation technology. The technology is from seawater, brackish water desalination and developed, often referred to as "desalination technology." As the reverse osmosis technology has no phase change, component-based, process simple and convenient operation, accounting for small size, less investment, low energy consumption advantages to develop very rapidly. RO technology has been widely used in sea water, brackish water desalination, pure water, ultra-pure water preparation, chemical separation, concentration, purification, waste water resource and other fields. Projects throughout the electric power, electronics, chemicals, light instry, coal, environmental protection, medicine, food and other instries.
Water resource is incremental development of freshwater resources and the protection of the environment a al purpose. Inorganic series of wastewater treatment and seawater desalination of brackish water using the same equipment and have the more common process technology. RO can waste in copper, lead, mercury, nickel, antimony, beryllium, arsenic, chromium, selenium, ammonium, zinc ion removal addition to 90-99%.
At present, the reverse osmosis technology in urban wastewater treatment, a number of instrial waste water treatment application of the depth has been a high degree of attention, including water reuse, wastewater treatment plant secondary effluent from the depth of treatment, after primary treatment of instrial waste water depth of processing system to take high-quality fresh water. Many water-scarce countries in the Middle East, in the extensive use of reverse osmosis desalination technology, the introction of reverse osmosis technology technical processing secondary effluent, effluent quality up to TDS ≤ 80mg / L, the expansion of freshwater resources. Such as the Middle East, Australia, Singapore and other countries are examples of major projects in this area 【9】.
4.Integrated membrane process wastewater treatment methods
Integrated membrane process is ultrafiltration / microfiltration and reverse osmosis used in combination to form to meet the purpose of咱reuse wastewater treatment process.Ultrafiltration, microfiltration can be used as stand-alone high-level tertiary treatment method, is also an ideal pre-treatment process of reverse osmosis technology, anti-pollution ability, superior performance of ultrafiltration, microfiltration unit to replace the complex conventional treatment, and the water quality much higher than the three water indicators, not only can remove the sewage bacteria and suspended solids, the COD, BOD also have some effect but addition.In ultrafiltration, microfiltration after the use of reverse osmosis membranes, its traditional pre-wash cycle from 3-4 weeks to process more than six months, the membrane can prolong life for years to reach -6. Membrane integrated wastewater reclamation process has the system is stable, maintaining a small area of small, less use of chemicals, processes and operation of a simple and low cost.
Conclusion
Membrane Wastewater Treatment and Reuse of coal mine is technically entirely reliable, which has a successful experience.
With the rapid development of instry, water pollution, worsening water scarcity will become increasingly serious, instrial wastewater recycling will be referred to the agenda.
From the environmental perspective, recycling of waste water re-use of mine has a very important environmental significance.
Of mine waste water recycling, not only can rece the amount of wastewater discharge, but also can make water resource, it should be said, it is a method of water resources in the hope of regeneration, but also our country to achieve sustainable use of water resources in an effective way to .
Of membrane processes for coal mine wastewater and reuse, both technically and economically feasible, economic and environmental benefits are very significant.
References
Gang Shao. Membrane water treatment technology and engineering examples 【M】. Beijing: Chemical Instry Press, 2002.256 ~ 280.
Healy I, Binchois music. The water and use the net again. Beijing: China Building a Board Association, 1985.
【3】 Bella G. Liputaike. Environmental engineer with the book. Beijing: China Building Instry Society out of plates, 1987.
【4】 High from Kai. Membrane separation technology and water reuse 【m】 .2003 Beijing Water Forum papers .2003.9.
【5】 Feng Zhang, Xu Ping. Reverse osmosis, nanofiltration membrane and its application in wastewater treatment 【M】. Membrane Science and Technology ,2003,23:234-236.
【6】 Mayao Guang, Ma Bolin. Wastewater utilization of agricultural resources. Beijing: Chemical Instry Press, 2002.45 ~ 78.
【7】 Yao Zhichun. Wastewater treatment and reuse. Gansu Water Conservancy and Hydropower 1999.: 56 ~ 60.
【8】 LEI Le-cheng, etc., sewage back with new technology and engineering design. Beijing: Chemical Engineering Press, .2002:453 ~ 461.
【9】 Zhang Bao cases. Reverse osmosis water treatment application technology 【M】. Beijing: China Electric Power Press, 2004.281 ~ 295.
煤矿矿井废水处理回用工艺比较研究
摘要:介绍了污水、废水处理资源化的最新技术和工艺,分析比较了三种工艺方案处理煤矿矿井废水的系统投资和运行成本,并探讨了反渗透水处理技术在煤矿矿井废水处理中应用的技术经济可行性.煤矿矿井废水处理回用的综合运行费用为:2.185-2.465元/吨。其中膜法的处理费用最低为:2.185元/吨。这样的价格对干旱缺水的西北地区是很有吸引力的。对矿井废水进行回收再利用,不但可以减少废水排放量,又可以使废水资源化,应该说,它是一种水资源再生的希望方法,也是我国实现水资源可持续利用的有效途径之一。
关键词:反渗透电镀废水处理回收利用
我国人口众多,淡水资源时空分布不均匀,水资源和社会经济发展不均衡;人口的不断增长又使水资源需求量逐年上升,工业的快速发展使水污染愈加严重,因此造成水资源缺短和水环境污染现象日趋严重。目前,我国水资源供需矛盾比较突出,全国有300多个城市缺水,其中有114个城市严重缺水。21世纪我国水资源供需形势非常严重,水资源危机将成为所有资源问题中最为严惩的问题。要解决这一难题,除水资源的科学治理和优化配量之外,充分发挥高新科技手段在水资源利用中的作用也是十分关键的。
近年来,我国每年排污水量约400-500亿M3,经处理后排放的仅15-25%,由于污水到处横流,使我国各大水源都产生不同程度的污染,水环境严重恶化【4】。所以,加强污水深度治理,使之不仅达标排放而且还可大量回用,非常必要,这对改善水环境、缓解水资源的不足,节约宝贵的水资源都是十分重要的。城市及工业污水经过深度处理后可用于农业浇灌、工业生产、城市景观、市政绿化、生活杂用、地下水回灌和补充地表水等方面的应用【8】。传统水处理技术能够消除部分污染物,将COD、BOD以及重金融等污染物指标降到安全排放标准或杂用标准,但无法完全消除排水中所含的微量溶解性污染物。采用反渗透膜技术可彻底去除这些污染物,实现严格意义下的污水再生。用传统处理工艺和膜技术集成,可将污水或废水变成不同水质标准的回用水,或使之循环回用,这样即缓解了供求矛盾,又减少了污染,还可促进环保产业的发展【6】。
污水废水资源化技术及应用简介
水环境质量的严重恶化和经济的高速发展,迫切要求有相应的污水废水资源化的技术。在这一领域中膜分离技术占有重要的位置和作用。膜分离作为一项高新技术在近40年来迅速发展成为产业化的高效节能分离技术过程。40多年,电渗析、反渗透、微滤、超滤、纳滤、渗透汽化,膜接触和膜反应过程相继发展起来,在能源、电子、石化、医药卫生、化工、轻工、食品、饮料行业和日常生活及环保领域等均获得广泛的应用,产生了显著的经济和社会效益。社会的需求使膜技术应允而生,也是社会的需求促使膜技术迅速发展,使膜技术不断创新、技术进步,完善,成为单元操作,成为集成过程中的关键【9】。
1.连续膜过滤技术
中空纤维膜由于比表面积大,膜组件的装填密度大,所以设备紧凑;这种膜因纺制而成,工艺简单,所以生产成本一般低于其它的膜:由于没有支撑层均可以反向清洗,非凡是一些耐污染性好,对氧化性清洗剂耐受性好的膜的出现,使得在大规模的污水处理工程中,中空纤维膜的应用有独特的优势【7】。
CMF技术的核心是高抗污染膜以及与之相配合的膜清洗技术,可以实现对膜的不停机清洗清洗,从而做到对料液不间断连续处理,保证设备的连续高效运行。
CMF目前主要用于大型城市污水处理厂二沉池生水的深度处理回用,海水淡化或大型反渗透系统的预处理。地表水地下水净化、饮料澄清除浊等。
2.膜生物反应器
膜生物反应器是膜分离技术和生物技术结合的新工艺。用在污水废水处理领域,利用膜件进行固液分离,截留的污泥或杂质回流至在生物反应器中,处理的清水透过膜排水,构成了污水处理的膜生物反应器系统,膜组件的作用相当于传统污水生物处理系统中的二沉池【4】。
MBR中使用的膜有平板膜、管式膜和中空纤维膜,目前主要以中空纤维膜为主。
生活污水经MBR处理后,生水水源已达到很高的水标准。此方法不仅限于处理生活污水,MBR技术也广泛地用于染色废水,洗毛废水、肉类加工污水等水处理系统。MBR系统的另一个特点是规模可大可小,小装置可用于一个家庭,大型装置日处理量可达数万立方米。
3.反渗透技术
反渗透技术是20世纪60年代初发展起来的以压力为驱动力的膜分离技术。该技术是从海水、苦咸水淡化而发展起来的,通常称为“淡化技术”。由于反渗透技术具有无相变,组件化、流程简单,操作方便,占面积小、投资少,耗能低等优点,发展十分迅速。RO技术已广泛用于海水、苦咸水淡化,纯水、超纯水制备,化工分离、浓缩、提纯,废水资源化等领域。工程遍布电力、电子、化工、轻工、煤炭、环保、医药、食品等行业。
废水资源化是有开发增量淡水资源与保护环境双重目的。无机系列废水处理与海水苦咸水淡化采用同类装并具有较多共性工艺技术。RO可使废液中的铜、铅、汞、镍、锑、铍、砷、铬、硒、铵、锌等离子脱除除90-99%。
目前,反渗透技术在城市污水深度处理,一些工业废水深度处理方面的应用受到了高度重视,包括中水回用,污水处理厂二级出水的深度处理,经初级处理后的工业废水深度处理制取优质淡水。中东不少缺水国家,在大量采用反渗透海水淡化技术的同时,引入反渗透技技术处理二级污水,出水水质可达TDS≤80mg/L,扩大了淡水资源。如中东地区、澳大利亚、新加坡等国都有这方面的大型工程实例【9】。
4.集成膜过程污水深度处理方法
集成膜过程是将超滤/微滤与反渗透结合使用,形成能够满足各咱回用目的的污水深度处理工艺。超滤、微滤可以作为独立的高级三级处理方法,也是反渗透过程理想的预处理工艺,抗污染能力强、性能优越的超滤、微滤单元代替了复杂的传统处理工艺,而且出水品质远高于三级出水指标,不但完全可以去除污水中的细菌和悬浮物,对COD、BOD也有一定的却除效果。在超滤、微滤之后使用的反渗透膜,其清洗周期由采用传统预处理工艺的3-4周增加到半年以上,膜寿命可延长到达-6年。膜集成污水再生工艺具有系统稳定、维护少、占地小、化学品用量少、流程简单和运行费用低等优点。
结论
煤矿矿井废水处理回用的综合运行费用为:2.185-2.465元/吨。其中膜法的处理费用最低为:2.185元/吨。这样的价格对干旱缺水的西北地区是很有吸引力的。
用膜法处理煤矿矿井废水并回用在技术上是完全可靠的,国内外都有成功经验。
随着工业的快速发展,水资源的污染日益严重,缺水现象会越来越严重,工业废水的回收利用将会提到议事日程。
从环境保护方面讲,对矿井废水进行回收再利用具有非常重要的环境意义。
对矿井废水进行回收再利用,不但可以减少废水排放量,又可以使废水资源化,应该说,它是一种水资源再生的希望方法,也是我国实现水资源可持续利用的有效途径之一。
膜法处理煤矿矿井废水并回用,不但在技术上和经济上都是可行的,经济和环境效益都非常显著。
参考文献
邵刚.膜法水处理技术及工程实例【M】.北京:化学工业出版社,2002.256~280.
希利I,舒瓦乐.水的再净与利用.北京:中国建筑出板社,1985.
【3】贝拉G.利普泰克.环境工程师用册.北京:中国建筑工业出板社,1987.
【4】高从锴.膜分离技术与水资源再利用【m】.2003北京水务论坛论文.2003.9.
【5】张烽,徐平.反渗透、纳滤膜及其在废水处理中的应用【M】.膜科学与技术,2003,23:234-236.
【6】马耀光,马柏林.废水的农业资源化利用.北京:化学工业出版社,2002.45~78.
【7】姚志春.污水净化再利用.甘肃水利水电1999.:56~60.
【8】雷乐成等,污水回用新技术及工程设计.北京:化学工程出版社.2002:453~461.
【9】张葆宗.反渗透水处理应用技术【M】.北京:中国电力出版社,2004.281~295.
③ 煤矿开采技术毕业论文
我帮你写
你Q我就好了
④ 小弟在做采矿毕业设计 急求一片3000字英文参考文献翻译
附录 1
井筒及巷道的支护
井筒的支护
在国外,很少使用砖、料石和铸铁井壁, 从前,几乎全用木支架,但现在混凝土和金属井壁使用量日增。 井壁的选择决定于围岩和水的条件,井筒的形式和材料的费用。
(1)木支架——直到最近,大多数方形的井筒还在用框形木支架支护井帮和分成隔间。.所用木料的尺寸和框距取决于所遇到的岩层情况。. 木支架缺点是费用高,强度低、寿命短,易引起火灾。在膨胀性岩层中,木支架损坏得慢,警告时间长。在大多数情况下,开始凿井时浇灌一个混凝土锁口以固定支架,为井筒木支架提供良好的基础。木框架一般用挂钩挂在上面的框架上,框架就位后插入支柱,拉紧挂钩,在井筒周围铺上背板。
(2)金属支护——有时用金属支架代替木支架。 通常与木背板配合使用。木背板可快速而高效地插入金属支架的翼缘中。金属支架若设计恰当其安装的速度和准确度均比木支架高,因为安装时金属支架可能螺栓连接,并且排列很整齐。
(3)混凝土井壁——现在,原形混凝土井壁使用日益广泛。 例如,在南非几乎100%的井筒采用圆形混凝土井壁。而且几乎所有井筒毫无例外地达到最高的凿井速度。 除了凿井速度快外,,还有许多其它优势。 圆形混凝土井壁做井筒指甲其强度系数最高,风流特性最好,与任何井壁形式相比其维护量最小。混凝土井壁容易拆除并改装成另一种提升布置方式,或改为风井而不影响围岩状态。这类井筒对涌水的控制或封堵容易的多。与大多数其他类型相比,这种井筒的事故较少,万一发生事故,修复也容易得多。在某些特殊的情况下,也采用方形或椭圆形混凝土做井壁的井筒。尽管方形井筒的成本与圆形或椭圆形相仿,但其强度不如圆形或椭圆形井筒。椭圆形井筒具有良好的强度系数,需要分开风流时采用这种形状。但起凿井费用比圆形的高。
(4 )喷浆或喷射混凝土井壁——有一些井壁采用喷浆或喷射混凝土井壁。这类井筒的罐道一般用锚杆固定。如果井筒完成后并能不需要罐道,那么凿井时可采用钢丝绳罐道。
巷道支护
过去,框形或多节木支架是大家熟悉的唯一支护井下巷道的方法。随着坑木的减少,宽翼缘型的出现,钢材,作为一种结构支护材料,迅速的取代了坑木。最近锚喷支护也列入矿山实用支护方式。不论锚杆还是喷射混凝土(包括喷浆及喷混凝土在内)一英尺巷道的支护费用一般比金属支架要低。有时两者同时采用,其费用也比金属支架省。
(1)金属支架——金属支架通常由两节组成,每节包括一条棚腿和半截拱。同样两节相对立好之后,在拱顶用螺栓对接。金属支架的尺寸取决于岩石的性质和地压。一般地说,小断面巷道采用4英寸或5英寸金属支架,间距为1.5—4英尺;中断面巷道采用5~6 英寸金属支架,间距为1.5—4英尺;大断面巷道采用6~8英寸金属支架,间距2~5英尺。对于全部采用锚喷支架的工程,只是在断层和严重破碎或软岩地带才需用金属支架。根据需要,金属棚子还必须铺以木档块及木背板。一个标准掘进班组架设一架金属棚子,需时20~40分钟。
(2 )锚杆支架——现在通用的能张紧的锚杆有许多多种,其主要区别在于,拧紧螺帽使锚杆张紧之前,在孔内固定锚头的胀圈结构的不同。最适合某种岩石的锚头形式要经常做试验来确定。软钢金属锚杆的直径至少应为1英寸,长度应为10英尺(巷道断面要足以允许使用这样长的锚杆)。安装锚杆时应认真研究岩石节理的规律。锚杆的布置要大致均匀有规律,使锚杆张紧之后能与围岩构成一个相似的拱形结构,以承受作用在巷道上的外部压力。在起拱线以上整个巷道顶板锚杆的平均间距在最小约12平方英尺/根,最大25或25以上平方英尺/根之间变化。由普通掘进班组安装锚杆时,一个标准掘进班组通常在30至40分钟内可安装锚杆,一个小时也许只能平均安装两根。
(3 )喷射混凝土——喷射混凝土或喷浆,这种把混凝土或砂浆直接喷到拱形巷道顶板岩石表面的方法正迅速地被公认是一种效率高而又经济的巷道支护方式。只要喷上的混凝土能附着相当时间达到初凝强度而不陷落,此方法在各类软、硬岩石或硬土上均可用。有许多促凝剂可到初凝。混凝土的喷射厚度为2~6英尺。干法喷射的效果通常比湿法好,因为可以喷、得厚一些,可以采用较大粒度的骨料(最大为0.75英寸),每台喷嘴的小时生产率较高(一个小时达5立方码)。喷射混凝土在经济上常具备的优点之一是可在装岩的同时,向巷道顶板喷混凝土,从而缩短完成整个“循环”所需用的时间。
木支架
掘进中也许需要支护巷道顶板和两帮的支架。传统的方法通常是掘进时先架设临时木支架,然后换成永久支架或衬砌。永久支架也可用坑木。
坑木作永久支架时应该很好地晾干并用防腐蚀剂处理。木支架不用专用的工具或设备就能方便地就地加工很快地架好,通过局部不良地层掘进时,用木材作临时支架,容易截割和加工,适应各种需要。
木棚是由几根坑木构成、横截巷道断面的支架。小断面巷道最常用的是三个构件组成的棚子,由一根顶梁(横梁或棚梁)架在两个棚腿上组成。棚腿倾斜度是每英尺1—1.5英寸,这样的斜度除非侧压力太大及底板松软,一般能防止棚腿底部向里推移。棚腿一般为硬木,圆形,小头的最小直径为5英寸。顶梁最小厚度一般为5英寸,宽度6—8英寸。背板一般厚2英寸,两帮和顶板上可铺也可不铺背板。
在膨胀岩层中两棚腿底部一般有“偏坡底撑”以防止棚腿移动,底板易隆起的地方,可采用反拱支架。巷道的悬顶(或顶板)如果做成拱形往往比较稳定,特别是在宽巷道中更是如此。只有顶板需要支护而两帮坚硬的地方,可以省去棚腿,拱梁则固定在起拱线处的梁窝中。支架木料的尺寸和棚架间距取决于巷道的断面和所需承受的压力。在膨胀岩层中,背板不要铺得太密,相邻背板之间应留一定间距,以释放低压。
装设木支架的常规工序和速度主要取决于支架在工作面后面应保持多近的距离。如果每进一个循环需要立即支护,那么架设支架就成为掘进循环的一部分。爆破后的第一道工序是撬落顶板上的浮石;在松软的地层中,利用前探梁、滑梁或类似的装置以支护最后一架棚子前面的顶板,以便装岩时保护工人。一个循环的矸石装完后,就架设新棚子,必要时用楔子固定并装上背板,并为新的循环安装好凿岩机。这种工序显然会减慢掘进速度,但是除非岩层条件太差需要才用前探板桩法或其他方法,一般坑木可标准化,并采用常规作业。作业开始之前,将所有材料和器材运到工作面,可加快速度;工人应携带整架棚子、角楔、木楔、背板和工具进入工作面。支护工作落后于工作面过远的地方,一般需要专业支架队。利用适当的工作台进行支架工作,可不影响掘进工作。如果采用移动式工作台,其台面有几架棚子长,其高度又能让矿车从底下通过,则对掘进工作会有好处的。
附录2
GROUND SUPPORT FOR SHAFTS AND TUNNELS
In the USA, brick, stone and cast iron shaft linings are rare; formerly, timbering was almost universal but concreting and steel framing are increasing in use. Choice of support depends on ground and water conditions, shape of shaft and cost of materials.
(1)Timber Sets——Until relatively recently, most rectangular shafts have used square-set timbering for ground support and compartment division .Size of the timber used and set spacing is dependent on ground conditions encountered .The disadvantages of timer sets are the cost, strength , short life and fire hazard involved. In swelling ground timbering fails slowly and with ample warning .in most cases , a concrete collar is poured at the start of a shaft to tie the sets in and provide a good bearing for the shaft-timbering installation .Timber sets usually are hung from the preceding set with steel hanging rods .After the set is in place , the posts are inserted and the hanging rods are tightened up . The lagging is placed in around the sides of the shaft.
(2)Steel Sets-Steel sets sometimes ate used instead of timber. Wood lagging generally is employed in conjunetion. The laggling can be placed in the web of the steel sket very quickly and effectivelt. Properly designed steel sets go in faster and more accuratelt than wooden sets, as they can be bolted together and lined up perfectly when assembled.
(3)Concrete Lining-Circular concrete-lined shafts are more and more used today. For example, in South Africa, almost 100% of the shafts installed are circular concretelined .Also almost without exception, the best sinking time is achieved. Besides the good sinking rate, there are numerous other advantages. The circular concrete section provides the greatest strength factor for ground support ,the best air-flow characteristics, and by far the lowest maintenance of any shaft type. It can be stripped easily and changed to another hoisting configuration, or to a ventilation shaft, without disturbing ground conditions. Water can be controlled or sealed off much easier in this type of shaft. There are fewer wrecks in this shaft than in most other types, and rehabilitation can be accomplished much easier if they do occnr. In some special cases concrete-lined shafts of a square of elliptical shape are used. Although the cost is similar, the square shaft does not have the strength of either the circular of elliptical. The elliptical shaft has a good strength factor and is used where split ventilation is required. It is, however, more expensive to sink than a circular shaft.
(4)Gunite or Shotcrete Lining——There have been some shafts sunk using gunite or shotcrete for wall support. The guides in this type of shaft usually are not required in the completed shafe, the rope guides could be used in sinking.
GROUND SUPPORT FOR TUNNELS
In former years, the square or segmented timber set was the only known method for supporting underground excavations. As timber become more scarce and wideflange steel shapes made their appearance, steel rapidly displaced timber as a structure-support material. More recently, rock bolting and pneumatically applied concrete have been added to the list of practical ground-support media. Either rock bolting or pneumatically applied concrete concrete usually cost less per linear foot of tunnel than steel ribs . Sometime the two are used together and still show a saving over steel ribs.
(1)Steel Rib Support-Steel rib sets commonly are fabricated in two pieces with the side leg and half of the arch in each piece. The two identical pieces are stood up and bolted together at a butt joint in the crown . Size of steel required will depend upon the nature of the rock and the pressure being exerted by the ground . Generally speaking, a small tunnel section will require a 4-or 5-in .rib with spacing of 1(1/2)to 4ft; medium-sized , 5-to 6-in. rib with spacing of 1(1/2) to 4 ft; large, a 6-to 8-in.rib with spacing of 2 to 5 ft. On a project where full utilization is being made of rock bolting and pneumatically applied concrete, steel rib supports need be used only in fault zones and through stretches of badly broken rock or soft ground. Supplementing the steel rib, timber blocking and lagging must be installed as required. A standard tunnel crew usually erects a set of steel in 20 to 40 min.
(2)Rock Bolting –A number of types of tensionable rockbolts presently are available , differing mostly in the arrangement of the expandable device which anchors the end of the bolt to the rock prior to applying the tension by tightening the nut. Experimentation frepuently is necessary to determine the type of anchor most suitable to a particular formation of rock. Mildsteel bolts should be at least 1 in. in dia and 10 ft long, provided the tunnel is large enough to permit insertion of rods of this length. Rockbolts must be installed with careful consideration for the jointing pattern of the rock.. They must also be installed in a more or less uniform and regular pattern so that when tensioned they will, with the surrounding rock,proce a homogeneous arch structure against the external stresses acting upon the excavation opening. Average spacing of the rockbolts, throughout the roof of the tunnel above the spring line, will vary from a minimum of about 12sq ft of rock per bolt to a maximum of 25 or more. When rockbolts are installed by the regular tunnel crew, a standard tunnel crew usually will install the bolts required for one full round of advance of 8ft in 30 to 40 min. If a two-man crew alone is installing bolts, they probably will average two bolts per hour.
(3)Pneumatically Applied Concrete—Shotcret or gunite, applied directly to the rock surface of the arched tunnel roof, is rapidly becoming accepted as an effective and economical means of ground support. It can be used in all types of fair to poor rock or firm earth provided the material will stand up without caving for a sufficient time to permit the sprayed concrete to gain its initial strength. Accelerating additives are which, when added to the concrete at the spray nozzle, will cause initial set to occur within 3to 10 min. after the mortar has been applied. The concrete is applied in thickness of 2to 6 in. Dry-process application usually proces better results than the wet process because it permits the placing of thicker layers, uses larger aggregates (maximum, 3/4 in.) and usually achieves a higher proction rate per hour per nozzle (to 5.0 cu yd. per hr). One of the economies which frequently can be achieved with pneumatically applied concrete reflects the fact that it can be applied readily to the tunnel roof ring the mucking cycle, thereby shortening the total time required to complete the “round”.
TIMBER SUPPORT
Supports for the tunnel roof and sides may be required while driving. Conventionally, temporary timbering is often used ring driving and replaced later by permanent supports or lining. Permanent supports may be of timber too.
For permanent support, timber should be well seasoned and treated with preservative. It is easily framed on the job and quickly erected without use of special tools or equipment. For temporary support, in local stretches of bad ground while advancing the heading timbers are readily cut and framed to suit requirements.
Timber sets comprises several timbers forming a framework across the tunnel section. The commonest form for narrow tunnels is the 3-piece set, consisting of a cap (crossbar or header) supported on two posts. The batter of the posts is 1 to 1.5in per ft, which is usually sufficient to prevent the bottoms of the posts. From pushing inward unless side pressure is excessive and the bottom soft. Posts are usually of hardwood, round, with small end 5-in minimum diameter. The minimum thickness of the cap is usually 5-in with width from 6 to 8 in. Lagging, usually 2 in thick, may or may not be set on the sides and top.
In swelling ground the timber set usually has :batter blocks” to prevent the displacement of the posts; where the bottom tends to heave, an inverted arch set may be used. The back (or roof) of the tunnel often stands better if arched, especially in wide tunnels. Where only the back requires support and the walls are strong, posts may be omitted and the arched timbers set in hitches out at the break-line of the arch. Size of timbers and interval between sets depend upon size of tunnel and pressures to be withstood. Swelling ground should not be close-lagged, but spaces left between adjacent pieces of lagging, through which pressure can be relieved.
Routine and speed of timbering depend largely on how close the timbering must be kept behind the face. If each round of advance must be supported at once, timbering becomes a part of the driving cycle. The first step after blasting is to scale the back; and , in loose ground, to hold the back ahead of the last set by forepoling, sliding booms or similar means, to protect men while mucking. After the round is mucked, the new set is erected, blocked in place and lagged if necessary, and the drills are set up for the new round. timbers can be standardized and a regular routine followed. Speed is gained by baving all materials and supplies at the face before work begins; timber for a compete set, blocks, wedges, lagging and tools, should be brought in with the crew. Where the timbering lags a considerable distance behind the face, a special timber crew is usually employed. With suitable scaffolding, work can proceed without interfering with driving operations. A movable scaffold, with a working deck several sets long and high enough to allow the tunnel cars to pass under it, may be advantageous.
抱歉 我也没找到!!你乱编一个吧
⑤ 国外矿井水深度处理的现状及参考文献下载
我有两个免费下载文献的地址 现在在单位网不好 我搜半天没搜出来 晚上给你吧 最好自己查 别人给的只是一两篇 不知有用不还 已经给你发到邮箱里了 您看一下
⑥ InternationalJournalof Rock Mechanics&MiningSciences 采矿科学文献翻译求助,在线等
对长壁开采和稳定性分析的数值模拟
在一个煤矿的大门
1。景区简介
该
inlongwallmines,stopevoidsarefilledbycave inroofrocks地雷。
屋顶的洞穴
gatesandchainpillars。
之间
roofboltingisoneofthemajor。
measuresforstabilisinggates。显然,loadingtotherockboltsis
causedbythelongwallmining。因此,analysisoftheboltload
可以一般,
设计:实证,分析,
数值方法。
在empiricalmethods [ 3 ] 1–,designchartsareconstructedby
统计。
该
数失效。
帐户。
分析
论[ 4 ]。theyareappropriateforlow stressconditionsinhard
岩石。insuchasite,
........................
真郁闷O(∩_∩)O
⑦ 露天煤矿安全开采的相关资料文献有哪些
《煤矿开采学》
全面系统地阐述了煤矿开采的基本原理及方法,概括了我国煤矿生产建设的最新成果、经验及可供借鉴的国外煤矿开采先进技术。内容包括采煤方法、准备方式及采区设计、开拓方式及矿井开采设计、矿井其他开采方法、露天开采等几大部分。
《采煤概论》
系统地介绍了煤矿地质、矿井各生产环节和通风与安全等方面的基本知识,主要内容包括地质与矿图、矿井开拓、井巷掘进、采煤方法、矿井通风与安全、矿井运输与提升等。本书既是煤炭技工学校非采煤专业教材,也作为煤矿职工的培训教材。
《煤矿特殊开采方法》
讲述了煤炭地下开采引起的上覆岩层及地表移动的基本理论,建筑物下、村庄下、铁路下、水体下和承压水上开采的相关规定、判别方法和应采取的技术措施;介绍了上行开采的条件及判别方法,深矿井开采的巷道布置、开采部署和矿压控制对策,难采煤层开采的途径,以及水力采煤、充填采煤及煤层气开采的特色。
⑧ 谁有采矿设计的相关文献(5000字左右)的中文版 和翻译版啊,如果由我倾家荡产给分!
说的具体一点
⑨ 谁能帮我找个英文文献 关于采矿地质煤的
http://www.ex.ac.uk/cornwall/academic_departments/csm/到这个网站看看。
⑩ 参考文献
[1]弗化奇A P.牛顿力学.北京:人民教育出版社,1982
[2]王龙甫.弹性理论.北京:科学出版社,1979
[3]Da Vinci L.Testing the strength of iron wiresof variouslengths(Notebook,ca.1500).In:ParsonsWB.Engineersand Engineering in Renaissance.Baltimore:Williams and Wilkins,1939.661
[4]Hudson J A.Rock engineering systems:theory and practice.London:Ellis Horwood Limited.1992.4~5
[5]Galileo G.Two New Science.New York:Macmillian,1933.1~300
[6]Hudson J A,Crouch S,Fairhurst C.Soft,Stiff and Servo-controlled Testing Machines.Eng.Geol.,1972,6(3):155~189
[7]Von Karman.Festigkeitsversuche unter allseitigem,Druck.Zeitschr.Ver.Dentsch.Ing.,1911,55:1749~1757
[8]郭惠丰,伞桂兰.粗晶大理岩的三轴残余强度及蠕变原因.地下空间,1999,19(5):699~701
[9]Mogi K.Effect of the intermediate principal stress on rock failure.J.Geophys.Res.,1967,72(20):5117~5131
[10]Akai K,Mori H.Study on the failure mechanism of a sand-stone under combined compressive stresses.Trans.Jpn.Soc.Civ.Eng.,1967,147:11~24
[11]Mogi K.Failure criteria of rocks(study by a new triaxial compression technique).J.Soc.Material Sci.Jpn.,1971,20:143~150
[12]Shimada M.Mechanical behavior of rocks under high pressure conditions.Netherlands:A A Balkema,2000.4~16
[13]Griggs D T.Hydrolytic weakening of quartz and other silicates.Geophys.J.R.Astr.Soc.,1967,14:19~31
[14]Tullis T E,Tullis J.Experimental rock deformation techniques.In:Hobbs B E,Heard H C.Mineral and Rock Deformation:Laboratory Studies.Geophysics.,1986,Monograph.36:297~324.(Washington D C:American Geophysics Union.)
[15]Kern H,Karl F.Eine dreiaxial wirkende Gensteinspresse mit Heizvorrichtung.Bergbauwissenschaften,1969,19:90~92
[16]Kern H.Preferred orientation of experimentally deformed limestone,marble,quartzite and rock salt at differenttemperature and states of stress.Tectonophysics,1977,39:103~120
[17]Carter N L,Christie JM,GriggsD T.Experimental deformation and recrystallization of quartz.Journal of Geology.1964,72:687~733
[18]Shimada M.The method of compression test under high pressure in a cubic press and the strength of granite.Tectonophysics,1981,72:343~357
[19]Cook N G W,Hojem JP M.A rigid50-ton compression and tension testing machine.South Africa Mech.Eng.,1966,16:89~92
[20]Wawersik W R,Fairhurst C.A study of brittle rock fracture in laboratory compression experiments.Inter.J.Rock Mech.Min.Sci.,1970,7(6):561~575
[21]尤明庆.岩样单轴压缩的失稳破坏和试验机加载性能.岩土力学,1998,19(3):43~49
[22]葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT 动态试验.岩石力学与工程学报,1999,18(5):497~502
[23]王恩元,何学秋.煤岩变形破裂电磁辐射的实验研究.地球物理学报,2000,43(1):131~137
[24]肖红飞,何学秋,冯涛等.煤岩动力灾害力电耦合.北京:地质出版社,2005
[25]Yasuhara H,Marone C,Elsworth D.Fault zone restrengthening and frictional healing:the role of pressure.Journal ofGeophysical research,110,B06310,doi:10.1029/2004JB003327
[26]岳中琦.岩土细观介质空间分布数字表述和相关力学数值分析的方法、应用和进展.岩石力学与工程学报,2006,26(5):875~888
[27]秦四清,李造鼎,张倬元等.岩石声发射技术概论.成都:西南交通大学出版社,1993
[28]First Symposium on Rock Mechanics.Quarterly of the Corolado School of Mines,1956,51(3):Foreword
[29]冯树仁,佘诗刚等译,葛修润校(布雷迪 B H G,布郎 E T著).地下采矿岩石力学.北京:煤炭工业出版社,1990
[30]郑颖人,沈珠江.岩土塑性力学原理.重庆:中国人民解放军后勤工程学院学报,1998
[31]李通林,谭学术,刘伟.矿山岩石力学.重庆:重庆大学出版社,1991.217~222
[32]谢和平.岩石和混凝土损伤力学.徐州:中国矿业大学出版社,1990
[33]华安增,张子新.层状非连续岩体稳定学.徐州:中国矿业大学出版社,1997
[34]徐小荷,余静.岩石破碎学.北京:煤炭工业出版社,1986
[35]范广勤.岩石流变学.北京:煤炭工业出版社,1993
[36]缪协兴,陈智纯.软岩力学.徐州:中国矿业大学出版社,1995
[37]何满潮,景海河,孙晓明.软岩工程力学.北京:科学出版社,2003
[38]赵阳升.岩石流体力学.北京:煤炭工业出版社,1994
[39]李贺,伊光志,许江等.岩石断裂力学.重庆:重庆大学出版社,1988.92~97
[40]冯夏庭.智能岩石力学导论.北京:科学出版社,2000
[41]唐春安.岩石破裂过程的数值试验.北京:科学出版社,2003
[42]周维垣,杨强.岩石力学数值计算方法.北京:中国电力出版社,2005
[43]杨志法,王思敬,冯紫良等.岩土工程反分析原理及应用.北京:地震出版社,2000
[44]姚卫星,余新陆,颜永平.脆性材料压拉强度比的估计.见:清华大学博士后科学论文集.北京:清华大学出版社,1992.9~16
[45]王庚荪,袁建新,吴玉山.多裂纹材料单轴压缩破坏机制与强度.岩土力学,1992,13(4):1~13
[46]孔圆波.砂岩试样裂纹扩展和宏观断裂的模型探讨.中国矿业大学学报,1991,20(4):93~98
[47]Hoek E.Brittle fracture propagation in rock under compression.Inter.J.Fract.Mech.,1965,1(2):136~155
[48]俞茂宏,李跃明等.强度理论研究新进展(论文集).西安:西安交通大学出版社,1992
[49]杨光.关于“岩土类材料统一强度理论及其应用”一文的讨论.岩土工程学报,1996,18(5):95~97
[50]俞茂宏.对“统一强度理论”讨论的答复.岩土工程学报,1996,18(5):97~99
[51]卓越,梁绍暹,张善德等.矿物岩石学.北京:煤炭工业出版社,1994
[52]卫管一,张长俊.岩石学简明教程.北京:地质出版社,1995.10~11,106~107
[53]马志先,吴国忠,马绍周译(Moorhouse W W 著).岩石薄片研究入门.北京:地质出版社,1986.187,244,309
[54]李世平,冯震海等译(巴拉G 著).岩石各向异性——理论与实验室试验.见:米勒 L.岩石力学.北京:煤炭工业出版社,1981,112~144
[55]崛部富男.岩石试料の形状が压缩强并びに引张さに及ぼす影响にっいて.东北矿山,1952,(7):21~24
[56]井上正康,木下重教等.岩石の压缩强さ测定法.日本矿业会志,1968,84(965):1462~1465
[57]International Society for Rock Mechanics Commission on Standardization on Laboratory and Field Tests.Suggested methods for determining the uniaxial compressive strength and deformability of rock materials.Inter.J.Rock Mech.Min.Sci.,1979,16(2):135~140
[58]张剑峰等.岩土工程勘探设计手册.北京:水利电力出版社,1992
[59]中华人民共和国地质矿产部.岩石物理力学性质试验规程.北京:地质出版社,1995
[60]中华人民共和国水利部.水利水电工程岩石试验规程.北京:水利水电出版社,2001.13
[61]中华人民共和国煤炭工业部.煤与岩石物理力学性质测定方法.北京:中国标准出版社,1988
[62]中华人民共和国建设部.工程岩体试验方法标准.北京:中国计划出版社,1999.15
[63]中华人民共和国地质矿产部.岩石物理力学性质试验规程.北京:地质出版社,1995.66
[64]Fairhurst C E,Hudson J A.Draft ISRM suggested method for the complete stress-strain curve for the intact rock in uniaxial compression.Inter.J.Rock Mech.Min.Sci.,1999,36:279~289
[65]尤明庆,苏承东.大理岩试样的长度对单轴压缩试验的影响.岩石力学与工程学报,2004,23(22):3754~3760
[66]Fairhurst C E,Hudson J A.单轴压缩试验测定完整岩石应力-应变全程曲线ISRM 建议方法草案.岩石力学与工程学报,2000,19(6):802~808
[67]Kostak B,Bielenstein H U.Strength distribution in hard rock.Inter.J.Rock Mech.Min.Sci.,1971,8(4):501~521
[68]尤明庆,苏承东,周英.不同煤块的强度特性及回归方法.岩石力学与工程学报,2003,22(12):2081~2085
[69]山口梅太郎.花こぅ岩の强度试验にぉける试验片の数につぃて.材料,1966,16(160):520~528
[70]郑雨天,傅冰骏等译(国际岩石力学学会实验室和现场试验标准化委员会著).岩石力学试验建议方法.北京:煤炭工业出版社,1979
[71]Barton N.Scale effects or sample bias? In:Proceedings of the first international workshop on scale effects in rock masses.Netherlands:A A Balkema,1990.31~58
[72]Thuro K,Plinninger R J,Zäh S,et al.Scale effects in rock properties(Part1).In:Särkkä & Eloranta(eds.).Rock Mechanics-a challenge for society.Swets& Zeitlinger Lisse,2001.169~174
[73]齐庆新,毛德兵,范绍刚.直接单轴拉伸条件下煤的弹脆塑性分析.见:中国岩石力学与工程学会第七次学术大会论文集.北京:科学技术出版社,2004.181~185
[74]Okubo F,Fukui K.Complete stress~strain curves for various rock types in uniaxial tension.Inter.J.Rock Mech.Min.Sci.Geomech.Abstr.,1996,33(6):549~556
[75]王思敬,杨志法,傅冰骏.中国岩石力学与工程世纪成就.南京:河海大学出版社,2004