数据库索引使用
A. 数据库建立索引怎么利用索引查询
1.合理使用索引
索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。
索引的使用要恰到好处,其使用原则如下:
在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。
在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。
在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。
如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。
使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而 使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量 数据后,删除并重建索引可以提高查询速度。
(1)在下面两条select语句中:
SELECT * FROM table1 WHERE field1<=10000 AND field1>=0;
SELECT * FROM table1 WHERE field1>=0 AND field1<=10000;
如果数据表中的数据field1都>=0,则第一条select语句要比第二条select语句效率高的多,因为第二条select语句的第一个条件耗费了大量的系统资源。
第一个原则:在where子句中应把最具限制性的条件放在最前面。
(2)在下面的select语句中:
SELECT * FROM tab WHERE a=… AND b=… AND c=…;
若有索引index(a,b,c),则where子句中字段的顺序应和索引中字段顺序一致。
第二个原则:where子句中字段的顺序应和索引中字段顺序一致。
——————————————————————————
以下假设在field1上有唯一索引I1,在field2上有非唯一索引I2。
——————————————————————————
(3) SELECT field3,field4 FROM tb WHERE field1='sdf' 快
SELECT * FROM tb WHERE field1='sdf' 慢[/cci]
因为后者在索引扫描后要多一步ROWID表访问。
(4) SELECT field3,field4 FROM tb WHERE field1>='sdf' 快
SELECT field3,field4 FROM tb WHERE field1>'sdf' 慢
因为前者可以迅速定位索引。
(5) SELECT field3,field4 FROM tb WHERE field2 LIKE 'R%' 快
SELECT field3,field4 FROM tb WHERE field2 LIKE '%R' 慢,
因为后者不使用索引。
(6) 使用函数如:
SELECT field3,field4 FROM tb WHERE upper(field2)='RMN'不使用索引。
如果一个表有两万条记录,建议不使用函数;如果一个表有五万条以上记录,严格禁止使用函数!两万条记录以下没有限制。
(7) 空值不在索引中存储,所以
SELECT field3,field4 FROM tb WHERE field2 IS[NOT] NULL不使用索引。
(8) 不等式如
SELECT field3,field4 FROM tb WHERE field2!='TOM'不使用索引。
相似地,
SELECT field3,field4 FROM tb WHERE field2 NOT IN('M','P')不使用索引。
(9) 多列索引,只有当查询中索引首列被用于条件时,索引才能被使用。
(10) MAX,MIN等函数,使用索引。
SELECT max(field2) FROM tb 所以,如果需要对字段取max,min,sum等,应该加索引。
一次只使用一个聚集函数,如:
SELECT “min”=min(field1), “max”=max(field1) FROM tb
不如:SELECT “min”=(SELECT min(field1) FROM tb) , “max”=(SELECT max(field1) FROM tb)
(11) 重复值过多的索引不会被查询优化器使用。而且因为建了索引,修改该字段值时还要修改索引,所以更新该字段的操作比没有索引更慢。
(12) 索引值过大(如在一个char(40)的字段上建索引),会造成大量的I/O开销(甚至会超过表扫描的I/O开销)。因此,尽量使用整数索引。 Sp_estspace可以计算表和索引的开销。
(13) 对于多列索引,ORDER BY的顺序必须和索引的字段顺序一致。
(14) 在sybase中,如果ORDER BY的字段组成一个簇索引,那么无须做ORDER BY。记录的排列顺序是与簇索引一致的。
(15) 多表联结(具体查询方案需要通过测试得到)
where子句中限定条件尽量使用相关联的字段,且尽量把相关联的字段放在前面。
SELECT a.field1,b.field2 FROM a,b WHERE a.field3=b.field3
field3上没有索引的情况下:
对a作全表扫描,结果排序
对b作全表扫描,结果排序
结果合并。
对于很小的表或巨大的表比较合适。
field3上有索引
按照表联结的次序,b为驱动表,a为被驱动表
对b作全表扫描
对a作索引范围扫描
如果匹配,通过a的rowid访问
(16) 避免一对多的join。如:
SELECT tb1.field3,tb1.field4,tb2.field2 FROM tb1,tb2 WHERE tb1.field2=tb2.field2 AND tb1.field2=‘BU1032’ AND tb2.field2= ‘aaa’
不如:
declare @a varchar(80)
SELECT @a=field2 FROM tb2 WHERE field2=‘aaa’
SELECT tb1.field3,tb1.field4,@a FROM tb1 WHERE field2= ‘aaa’
(16) 子查询
用exists/not exists代替in/not in操作
比较:
SELECT a.field1 FROM a WHERE a.field2 IN(SELECT b.field1 FROM b WHERE b.field2=100)
SELECT a.field1 FROM a WHERE EXISTS( SELECT 1 FROM b WHERE a.field2=b.field1 AND b.field2=100)
SELECT field1 FROM a WHERE field1 NOT IN( SELECT field2 FROM b)
SELECT field1 FROM a WHERE NOT EXISTS( SELECT 1 FROM b WHERE b.field2=a.field1)
(17) 主、外键主要用于数据约束,sybase中创建主键时会自动创建索引,外键与索引无关,提高性能必须再建索引。
(18) char类型的字段不建索引比int类型的字段不建索引更糟糕。建索引后性能只稍差一点。
(19) 使用count(*)而不要使用count(column_name),避免使用count(DISTINCT column_name)。
(20) 等号右边尽量不要使用字段名,如:
SELECT * FROM tb WHERE field1 = field3
(21) 避免使用or条件,因为or不使用索引。
2.避免使用order by和group by字句。
因为使用这两个子句会占用大量的临时空间(tempspace),如果一定要使用,可用视图、人工生成临时表的方法来代替。
如果必须使用,先检查memory、tempdb的大小。
测试证明,特别要避免一个查询里既使用join又使用group by,速度会非常慢!
3.尽量少用子查询,特别是相关子查询。因为这样会导致效率下降。
一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。
4.消除对大型表行数据的顺序存取
在 嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。
比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询 10亿行数据。
避免这种情况的主要方法就是对连接的列进行索引。
例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个 表要做连接,就要在“学号”这个连接字段上建立索引。
还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。
下面的查询将强迫对orders表执行顺序操作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008
虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001
UNION
SELECT * FROM orders WHERE order_num=1008
这样就能利用索引路径处理查询。
5.避免困难的正规表达式
MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。
另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3] >“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。
6.使用临时表加速查询
把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。例如:
SELECT cust.name,rcvbles.balance,……other COLUMNS
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>0
AND cust.postcode>“98000”
ORDER BY cust.name
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:
SELECT cust.name,rcvbles.balance,……other COLUMNS
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>;0
ORDER BY cust.name
INTO TEMP cust_with_balance
然后以下面的方式在临时表中查询:
SELECT * FROM cust_with_balance
WHERE postcode>“98000”
临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。
注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。
7.用排序来取代非顺序存取
非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。
B. 数据库中的"索引"用来做什么用啊~
第二次回答:
问题补充:能不能具体点,新建一个索引就可以了吗
基本上可以这么说,不过你也可以修改索引。
记住:
索引其实关键目的是为了加快检索速度而建立的,所以,怎么用索引是数据库系统本身的事情,作为数据库设计或使用者,设计并创建好索引然后体验加上索引后的查询变快的感觉就行了。所以,索引怎么用就变为了“怎么创建合适的索引”
以下回答是否符合你的要求?你还有什么问题?
第一次回答:
一、索引是什么
索引是与表或视图关联的磁盘上结构,可以加快从表或视图中检索行的速度。索引包含由表或视图中的一列或多列生成的键。这些键存储在一个结构(B 树)中,使 SQL Server 可以快速有效地查找与键值关联的行。
表或视图可以包含以下类型的索引:
* 聚集
o 聚集索引根据数据行的键值在表或视图中排序和存储这些数据行。索引定义中包含聚集索引列。每个表只能有一个聚集索引,因为数据行本身只能按一个顺序排序。
o 只有当表包含聚集索引时,表中的数据行才按排序顺序存储。如果表具有聚集索引,则该表称为聚集表。如果表没有聚集索引,则其数据行存储在一个称为堆的无序结构中。
* 非聚集
o 非聚集索引具有独立于数据行的结构。非聚集索引包含非聚集索引键值,并且每个键值项都有指向包含该键值的数据行的指针。
o 从非聚集索引中的索引行指向数据行的指针称为行定位器。行定位器的结构取决于数据页是存储在堆中还是聚集表中。对于堆,行定位器是指向行的指针。对于聚集表,行定位器是聚集索引键。
o 您可以向非聚集索引的叶级添加非键列以跳过现有的索引键限制(900 字节和 16 键列),并执行完整范围内的索引查询。
聚集索引和非聚集索引都可以是唯一的。这意味着任何两行都不能有相同的索引键值。另外,索引也可以不是唯一的,即多行可以共享同一键值。
每当修改了表数据后,都会自动维护表或视图的索引。
索引和约束
对表列定义了 PRIMARY KEY 约束和 UNIQUE 约束时,会自动创建索引。例如,如果创建了表并将一个特定列标识为主键,则 数据库引擎自动对该列创建 PRIMARY KEY 约束和索引。有关详细信息,请参阅创建索引(数据库引擎)。
二、索引有什么用
与书中的索引一样,数据库中的索引使您可以快速找到表或索引视图中的特定信息。索引包含从表或视图中一个或多个列生成的键,以及映射到指定数据的存储位置的指针。通过创建设计良好的索引以支持查询,可以显著提高数据库查询和应用程序的性能。索引可以减少为返回查询结果集而必须读取的数据量。索引还可以强制表中的行具有唯一性,从而确保表数据的数据完整性。
设计良好的索引可以减少磁盘 I/O 操作,并且消耗的系统资源也较少,从而可以提高查询性能。对于包含 SELECT、UPDATE、DELETE 或 MERGE 语句的各种查询,索引会很有用。例如,在 AdventureWorks 数据库中执行的查询 SELECT Title, HireDate FROM HumanResources.Employee WHERE EmployeeID = 250。执行此查询时,查询优化器评估可用于检索数据的每个方法,然后选择最有效的方法。可能采用的方法包括扫描表和扫描一个或多个索引(如果有)。
扫描表时,查询优化器读取表中的所有行,并提取满足查询条件的行。扫描表会有许多磁盘 I/O 操作,并占用大量资源。但是,如果查询的结果集是占表中较高百分比的行,扫描表会是最为有效的方法。
查询优化器使用索引时,搜索索引键列,查找到查询所需行的存储位置,然后从该位置提取匹配行。通常,搜索索引比搜索表要快很多,因为索引与表不同,一般每行包含的列非常少,且行遵循排序顺序。
查询优化器在执行查询时通常会选择最有效的方法。但如果没有索引,则查询优化器必须扫描表。您的任务是设计并创建最适合您的环境的索引,以便查询优化器可以从多个有效的索引中选择。SQL Server 提供的数据库引擎优化顾问可以帮助分析数据库环境并选择适当的索引。
三、索引怎么用
索引其实关键目的是为了加快检索速度而建立的,所以,怎么用索引是数据库系统本身的事情,作为数据库设计或使用者,设计并创建好索引然后体验加上索引后的查询变快的感觉就行了。所以,索引怎么用就变为了“怎么创建合适的索引”,以下说明这个问题:
索引设计不佳和缺少索引是提高数据库和应用程序性能的主要障碍。设计高效的索引对于获得良好的数据库和应用程序性能极为重要。为数据库及其工作负荷选择正确的索引是一项需要在查询速度与更新所需开销之间取得平衡的复杂任务。如果索引较窄,或者说索引关键字中只有很少的几列,则需要的磁盘空间和维护开销都较少。而另一方面,宽索引可覆盖更多的查询。您可能需要试验若干不同的设计,才能找到最有效的索引。可以添加、修改和删除索引而不影响数据库架构或应用程序设计。因此,应试验多个不同的索引而无需犹豫。
SQL Server 中的查询优化器可在大多数情况下可靠地选择最高效的索引。总体索引设计策略应为查询优化器提供可供选择的多个索引,并依赖查询优化器做出正确的决定。这在多种情况下可减少分析时间并获得良好的性能。若要查看查询优化器对特定查询使用的索引,请在 SQL Server Management Studio 中的“查询”菜单上选择“包括实际的执行计划”。
不要总是将索引的使用等同于良好的性能,或者将良好的性能等同于索引的高效使用。如果只要使用索引就能获得最佳性能,那查询优化器的工作就简单了。但事实上,不正确的索引选择并不能获得最佳性能。因此,查询优化器的任务是只在索引或索引组合能提高性能时才选择它,而在索引检索有碍性能时则避免使用它。
建议的索引设计策略包括以下任务:
1. 了解数据库本身的特征。例如,它是频繁修改数据的联机事务处理 (OLTP) 数据库,还是主要包含只读数据的决策支持系统 (DSS) 或数据仓库 (OLAP) 数据库?
2. 了解最常用的查询的特征。例如,了解到最常用的查询联接两个或多个表将有助于决定要使用的最佳索引类型。
3. 了解查询中使用的列的特征。例如,某个索引对于含有整数数据类型同时还是唯一的或非空的列是理想索引。筛选索引适用于具有定义完善的数据子集的列。
4. 确定哪些索引选项可在创建或维护索引时提高性能。例如,对现有某个大型表创建聚集索引将会受益于 ONLINE 索引选项。ONLINE 选项允许在创建索引或重新生成索引时继续对基础数据执行并发活动。
5. 确定索引的最佳存储位置。非聚集索引可以与基础表存储在同一个文件组中,也可以存储在不同的文件组中。索引的存储位置可通过提高磁盘 I/O 性能来提高查询性能。例如,将非聚集索引存储在表文件组所在磁盘以外的某个磁盘上的一个文件组中可以提高性能,因为可以同时读取多个磁盘。
或者,聚集索引和非聚集索引也可以使用跨越多个文件组的分区方案。在维护整个集合的完整性时,使用分区可以快速而有效地访问或管理数据子集,从而使大型表或索引更易于管理。有关详细信息,请参阅已分区表和已分区索引。在考虑分区时,应确定是否应对齐索引,即,是按实质上与表相同的方式进行分区,还是单独分区。
# 设计索引。
索引设计是一项关键任务。索引设计包括确定要使用的列,选择索引类型(例如聚集或非聚集),选择适当的索引选项,以及确定文件组或分区方案布置。
# 确定最佳的创建方法。按照以下方法创建索引:
* 使用 CREATE TABLE 或 ALTER TABLE 对列定义 PRIMARY KEY 或 UNIQUE 约束
SQL Server 数据库引擎自动创建唯一索引来强制 PRIMARY KEY 或 UNIQUE 约束的唯一性要求。默认情况下,创建的唯一聚集索引可以强制 PRIMARY KEY 约束,除非表中已存在聚集索引或指定了唯一的非聚集索引。默认情况下,创建的唯一非聚集索引可以强制 UNIQUE 约束,除非已明确指定唯一的聚集索引且表中不存在聚集索引。
还可以指定索引选项和索引位置、文件组或分区方案。
创建为 PRIMARY KEY 或 UNIQUE 约束的一部分的索引将自动给定与约束名称相同的名称。
* 使用 CREATE INDEX 语句或 SQL Server Management Studio 对象资源管理器中的“新建索引”对话框创建独立于约束的索引
必须指定索引的名称、表以及应用该索引的列。还可以指定索引选项和索引位置、文件组或分区方案。默认情况下,如果未指定聚集或唯一选项,将创建非聚集的非唯一索引。若要创建筛选索引,请使用可选的 WHERE 子句。
# 创建索引。
要考虑的一个重要因素是对空表还是对包含数据的表创建索引。对空表创建索引在创建索引时不会对性能产生任何影响,而向表中添加数据时,会对性能产生影响。
对大型表创建索引时应仔细计划,这样才不会影响数据库性能。对大型表创建索引的首选方法是先创建聚集索引,然后创建任何非聚集索引。在对现有表创建索引时,请考虑将 ONLINE 选项设置为 ON。该选项设置为 ON 时,将不持有长期表锁以继续对基础表的查询或更新。
简单的创建索引,可采用如下语句:
CREATE INDEX IX_ProctVendor_VendorID
ON Purchasing.ProctVendor (VendorID, VendorName);
GO
C. 设计数据库中的索引有什么作用
设计数据库中的索引可以大大提高系统的性能:
1、通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
2、可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
3、可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。
4、在使用分组和排序 子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。
5、通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
(3)数据库索引使用扩展阅读
索引是建立在数据库表中的某些列的上面。因此,在创建索引的时候,应该仔细考虑在哪些列上可以创建索引,在哪些列上不能创建索引。一般来说,应该在这些列上创建索引,例如:
1、在经常需要搜索的列上,可以加快搜索的速度。
2、在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构。
3、在经常用在连接的列上,这 些列主要是一些外键,可以加快连接的速度。
4、在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的。
5、在经常需要排序的列上创 建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间。
6、在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。
D. 在数据表中索引有什么用,怎么建立索引
索引用于快速找出在抄某个列中有一特定值的行,不使用索引,MySQL必须从第一条记录开始读完整个表,直到找出相关的行,表越大,查询数据所花费的时间就越多。建立索引的操作步骤如下:
1、首先我们打开一个要操作的数据表,如下图所示,我们需要给name字段添加索引。
E. mysql数据库,索引是怎么使用的
MySQL支持很多数据类型,选择合适的数据类型存储数据对性能有很大的影响。通常来说,可以遵循以下一些指导原则:
(1)越小的数据类型通常更好:越小的数据类型通常在磁盘、内存和CPU缓存中都需要更少的空间,处理起来更快。
(2)简单的数据类型更好:整型数据比起字符,处理开销更小,因为字符串的比较更复杂。在MySQL中,应该用内置的日期和时间数据类型,而不是用字符串来存储时间;以及用整型数据类型存储IP地址。
(3)尽量避免NULL:应该指定列为NOT NULL,除非你想存储NULL。在MySQL中,含有空值的列很难进行查询优化,因为它们使得索引、索引的统计信息以及比较运算更加复杂。你应该用0、一个特殊的值或者一个空串代替空值。
F. 数据库中的常规索引怎么使用
索引不需要你主动去调用的,一般当数据量比较大时(至少也要上万),可以在经常作为where后面查询的列上面见索引,这样查询速度就会快些!
G. 请问数据库的索引创建后要怎么用啊
应该建索引的字段:1.经常作为查询条件的字段2.外键3.经常需要排序的字段4.分组排序的字段
应该少建或者不建索引的字段有:1.表记录太少,2.经常需要插入,删除,修改的表,3.表中数据重复且分布平均的字段
一些SQL的写法会限制索引的使用:1.where子句中如果使用in、or、like、!= >,均会导致索引不能正常使用,将">"换成">and=chr(0)";2.使用函数时,该列就不能使用索引。3.比较不匹配数据类型时,该索引将会被忽略。
一些SQL语句优化的写法:1.如果from是双表的查询时,大表放在前面,小表放在后面(基础表)。最后面的表是基础表。(只在基于规则的优化器中有效)2.如果三表查询时,选择交叉表(intersection table)作为基础表.(只在基于规则的优化器中有效)3.写where条件时,有索引字段的判断在前,其它字段的判断在后;如果where条件中用到复合索引,按照索引列在复合索引中出现的顺序来依次写where条件;4.查询数量较大时,使用表连接代替IN,EXISTS,NOT IN,NOT EXISTS等。5.ORACLE采用自下而上的顺序解析WHERE子句,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.
H. 数据库索引的作用
为什么要创建索引呢?这是因为,创建索引可以大大提高系统的性能。第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。第二,可以大大加快 数据的检索速度,这也是创建索引的最主要的原因。第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。第四,在使用分组和排序 子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
也许会有人要问:增加索引有如此多的优点,为什么不对表中的每一个列创建一个索引呢?这种想法固然有其合理性,然而也有其片面性。虽然,索引有许多优点, 但是,为表中的每一个列都增加索引,是非常不明智的。这是因为,增加索引也有许多不利的一个方面。第一,创建索引和维护索引要耗费时间,这种时间随着数据 量的增加而增加。第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。 第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。
索引是建立在数据库表中的某些列的上面。因此,在创建索引的时候,应该仔细考虑在哪些列上可以创建索引,在哪些列上不能创建索引。一般来说,应该在这些列 上创建索引,例如:在经常需要搜索的列上,可以加快搜索的速度;在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;在经常用在连接的列上,这 些列主要是一些外键,可以加快连接的速度;在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;在经常需要排序的列上创 建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。
同样,对于有些列不应该创建索引。一般来说,不应该创建索引的的这些列具有下列特点:第一,对于那些在查询中很少使用或者参考的列不应该创建索引。这是因 为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。第二,对于那 些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比 例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。第三,对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。第四,当修改性能远远大于检索性能时,不应该创建索 引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因 此,当修改性能远远大于检索性能时,不应该创建索引。
创建索引的方法和索引的特征
创建索引的方法 51aspx.com
创建索引有多种方法,这些方法包括直接创建索引的方法和间接创建索引的方法。直接创建索引,例如使用CREATE INDEX语句或者使用创建索引向导,间接创建索引,例如在表中定义主键约束或者唯一性键约束时,同时也创建了索引。虽然,这两种方法都可以创建索引,但 是,它们创建索引的具体内容是有区别的。
使用CREATE INDEX语句或者使用创建索引向导来创建索引,这是最基本的索引创建方式,并且这种方法最具有柔性,可以定制创建出符合自己需要的索引。在使用这种方式 创建索引时,可以使用许多选项,例如指定数据页的充满度、进行排序、整理统计信息等,这样可以优化索引。使用这种方法,可以指定索引的类型、唯一性和复合 性,也就是说,既可以创建聚簇索引,也可以创建非聚簇索引,既可以在一个列上创建索引,也可以在两个或者两个以上的列上创建索引。
通过定义主键约束或者唯一性键约束,也可以间接创建索引。主键约束是一种保持数据完整性的逻辑,它限制表中的记录有相同的主键记录。在创建主键约束时,系 统自动创建了一个唯一性的聚簇索引。虽然,在逻辑上,主键约束是一种重要的结构,但是,在物理结构上,与主键约束相对应的结构是唯一性的聚簇索引。换句话 说,在物理实现上,不存在主键约束,而只存在唯一性的聚簇索引。同样,在创建唯一性键约束时,也同时创建了索引,这种索引则是唯一性的非聚簇索引。因此, 当使用约束创建索引时,索引的类型和特征基本上都已经确定了,由用户定制的余地比较小。
当在表上定义主键或者唯一性键约束时,如果表中已经有了使用CREATE INDEX语句创建的标准索引时,那么主键约束或者唯一性键约束创建的索引覆盖以前创建的标准索引。也就是说,主键约束或者唯一性键约束创建的索引的优先 级高于使用CREATE INDEX语句创建的索引。
索引的特征
索引有两个特征,即唯一性索引和复合索引。
唯一性索引保证在索引列中的全部数据是唯一的,不会包含冗余数据。如果表中已经有一个主键约束或者唯一性键约束,那么当创建表或者修改表时,SQL Server自动创建一个唯一性索引。然而,如果必须保证唯一性,那么应该创建主键约束或者唯一性键约束,而不是创建一个唯一性索引。当创建唯一性索引 时,应该认真考虑这些规则:当在表中创建主键约束或者唯一性键约束时,SQL Server自动创建一个唯一性索引;如果表中已经包含有数据,那么当创建索引时,SQL Server检查表中已有数据的冗余性;每当使用插入语句插入数据或者使用修改语句修改数据时,SQL Server检查数据的冗余性:如果有冗余值,那么SQL Server取消该语句的执行,并且返回一个错误消息;确保表中的每一行数据都有一个唯一值,这样可以确保每一个实体都可以唯一确认;只能在可以保证实体 完整性的列上创建唯一性索引,例如,不能在人事表中的姓名列上创建唯一性索引,因为人们可以有相同的姓名。
复合索引就是一个索引创建在两个列或者多个列上。在搜索时,当两个或者多个列作为一个关键值时,最好在这些列上创建复合索引。当创建复合索引时,应该考虑 这些规则:最多可以把16个列合并成一个单独的复合索引,构成复合索引的列的总长度不能超过900字节,也就是说复合列的长度不能太长;在复合索引中,所 有的列必须来自同一个表中,不能跨表建立复合列;在复合索引中,列的排列顺序是非常重要的,因此要认真排列列的顺序,原则上,应该首先定义最唯一的列,例 如在(COL1,COL2)上的索引与在(COL2,COL1)上的索引是不相同的,因为两个索引的列的顺序不同;为了使查询优化器使用复合索引,查询语 句中的WHERE子句必须参考复合索引中第一个列;当表中有多个关键列时,复合索引是非常有用的;使用复合索引可以提高查询性能,减少在一个表中所创建的 索引数量。
索引的类型
根据索引的顺序与数据表的物理顺序是否相同,可以把索引分成两种类型。一种是数据表的物理顺序与索引顺序相同的聚簇索引,另一种是数据表的物理顺序与索引顺序不相同的非聚簇索引。
聚簇索引的体系结构
索引的结构类似于树状结构,树的顶部称为叶级,树的其它部分称为非叶级,树的根部在非叶级中。同样,在聚簇索引中,聚簇索引的叶级和非叶级构成了一个树状 结构,索引的最低级是叶级。在聚簇索引中,表中的数据所在的数据页是叶级,在叶级之上的索引页是非叶级,索引数据所在的索引页是非叶级。在聚簇索引中,数 据值的顺序总是按照升序排列。
应该在表中经常搜索的列或者按照顺序访问的列上创建聚簇索引。当创建聚簇索引时,应该考虑这些因素:每一个表只能有一个聚簇索引,因为表中数据的物理顺序 只能有一个;表中行的物理顺序和索引中行的物理顺序是相同的,在创建任何非聚簇索引之前创建聚簇索引,这是因为聚簇索引改变了表中行的物理顺序,数据行按 照一定的顺序排列,并且自动维护这个顺序;关键值的唯一性要么使用UNIQUE关键字明确维护,要么由一个内部的唯一标识符明确维护,这些唯一性标识符是 系统自己使用的,用户不能访问;聚簇索引的平均大小大约是数据表的百分之五,但是,实际的聚簇索引的大小常常根据索引列的大小变化而变化;在索引的创建过 程中,SQL Server临时使用当前数据库的磁盘空间,当创建聚簇索引时,需要1.2倍的表空间的大小,因此,一定要保证有足够的空间来创建聚簇索引。
当系统访问表中的数据时,首先确定在相应的列上是否存在有索引和该索引是否对要检索的数据有意义。如果索引存在并且该索引非常有意义,那么系统使用该索引 访问表中的记录。系统从索引开始浏览到数据,索引浏览则从树状索引的根部开始。从根部开始,搜索值与每一个关键值相比较,确定搜索值是否大于或者等于关键 值。这一步重复进行,直到碰上一个比搜索值大的关键值,或者该搜索值大于或者等于索引页上所有的关键值为止。
非聚簇索引的体系结构
非聚簇索引的结构也是树状结构,与聚簇索引的结构非常类似,但是也有明显的不同。
在非聚簇索引中,叶级仅包含关键值,而没有包含数据行。非聚簇索引表示行的逻辑顺序。 非聚簇索引有两种体系结构:一种体系结构是在没有聚簇索引的表上创建非聚簇索引,另一种体系结构是在有聚簇索引的表上创建非聚簇索引。
如果一个数据表中没有聚簇索引,那么这个数据表也称为数据堆。当非聚簇索引在数据堆的顶部创建时,系统使用索引页中的行标识符指向数据页中的记录。行标识 符存储了数据所在位置的信息。数据堆是通过使用索引分配图(IAM)页来维护的。IAM页包含了数据堆所在簇的存储信息。在系统表sysindexes 中,有一个指针指向了与数据堆相关的第一个IAM页。系统使用IAM页在数据堆中浏览和寻找可以插入新的记录行的空间。这些数据页和在这些数据页中的记录 没有任何的顺序并且也没有链接在一起。在这些数据页之间的唯一的连接是IAM中记录的顺序。当在数据堆上创建了非聚簇索引时,叶级中包含了指向数据页的行 标识符。行标识符指定记录行的逻辑顺序,由文件ID、页号和行ID组成。这些行的标识符维持唯一性。非聚簇索引的叶级页的顺序不同于表中数据的物理顺序。 这些关键值在叶级中以升序维持。
当非聚簇索引创建在有聚簇索引的表上的时候,系统使用索引页中的指向聚簇索引的聚簇键。聚簇键存储了数据的位置信息。如果某一个表有聚簇索引,那么非聚簇 索引的叶级包含了映射到聚簇键的聚簇键值,而不是映射到物理的行标识符。当系统访问有非聚簇索引的表中数据时,并且这种非聚簇索引创建在聚簇索引上,那么 它首先从非聚簇索引来找到指向聚簇索引的指针,然后通过使用聚簇索引来找到数据。
当需要以多种方式检索数据时,非聚簇索引是非常有用的。当创建非聚簇索引时,要考虑这些情况:在缺省情况下,所创建的索引是非聚簇索引;在每一个表上面,可以创建不多于249个非聚簇索引,而聚簇索引最多只能有一个。
系统如何访问表中的数据
一般地,系统访问数据库中的数据,可以使用两种方法:表扫描和索引查找。第一种方法是表扫描,就是指系统将指针放置在该表的表头数据所在的数据页上,然后 按照数据页的排列顺序,一页一页地从前向后扫描该表数据所占有的全部数据页,直至扫描完表中的全部记录。在扫描时,如果找到符合查询条件的记录,那么就将 这条记录挑选出来。最后,将全部挑选出来符合查询语句条件的记录显示出来。第二种方法是使用索引查找。索引是一种树状结构,其中存储了关键字和指向包含关 键字所在记录的数据页的指针。当使用索引查找时,系统沿着索引的树状结构,根据索引中关键字和指针,找到符合查询条件的的记录。最后,将全部查找到的符合 查询语句条件的记录显示出来。
在SQL Server中,当访问数据库中的数据时,由SQL Server确定该表中是否有索引存在。如果没有索引,那么SQL Server使用表扫描的方法访问数据库中的数据。查询处理器根据分布的统计信息生成该查询语句的优化执行规划,以提高访问数据的效率为目标,确定是使用 表扫描还是使用索引。
索引的选项
在创建索引时,可以指定一些选项,通过使用这些选项,可以优化索引的性能。这些选项包括FILLFACTOR选项、PAD_INDEX选项和SORTED_DATA_REORG选项。
使用FILLFACTOR选项,可以优化插入语句和修改语句的性能。当某个索引页变满时,SQL Server必须花费时间分解该页,以便为新的记录行腾出空间。使用FILLFACTOR选项,就是在叶级索引页上分配一定百分比的自由空间,以便减少页 的分解时间。当在有数据的表中创建索引时,可以使用FILLFACTOR选项指定每一个叶级索引节点的填充的百分比。缺省值是0,该数值等价于100。在 创建索引的时候,内部索引节点总是留有了一定的空间,这个空间足够容纳一个或者两个表中的记录。在没有数据的表中,当创建索引的时候,不要使用该选项,因 为这时该选项是没有实际意义的。另外,该选项的数值在创建时指定以后,不能动态地得到维护,因此,只应该在有数据的表中创建索引时才使用。
PAD_INDEX选项将FILLFACTOR选项的数值同样也用于内部的索引节点,使内部的索引节点的填充度与叶级索引的节点中的填充度相同。如果没有 指定FILLFACTOR选项,那么单独指定PAD_INDEX选项是没有实际意义的,这是因为PAD_INDEX选项的取值是由FILLFACTOR选 项的取值确定的。
当创建聚簇索引时,SORTED_DATA_REORG选项清除排序,因此可以减少建立聚簇索引所需要的时间。当在一个已经变成碎块的表上创建或者重建聚 簇索引时,使用SORTED_DATA_REORG选项可以压缩数据页。当重新需要在索引上应用填充度时,也使用该选项。当使用 SORTED_DATA_REORG选项时,应该考虑这些因素:SQL Server确认每一个关键值是否比前一个关键值高,如果都不高,那么不能创建索引;SQL Server要求1.2倍的表空间来物理地重新组织数据;使用SORTED_DATA_REORG选项,通过清除排序进程而加快索引创建进程;从表中物理 地拷贝数据;当某一个行被删除时,其所占的空间可以重新利用;创建全部非聚簇索引;如果希望把叶级页填充到一定的百分比,可以同时使用 FILLFACTOR选项和SORTED_DATA_REORG选项。
索引的维护
为了维护系统性能,索引在创建之后,由于频繁地对数据进行增加、删除、修改等操作使得索引页发生碎块,因此,必须对索引进行维护。
使用DBCC SHOWCONTIG语句,可以显示表的数据和索引的碎块信息。当执行DBCC SHOWCONTIG语句时,SQL Server浏览叶级上的整个索引页,来确定表或者指定的索引是否严重碎块。DBCC SHOWCONTIG语句还能确定数据页和索引页是否已经满了。当对表进行大量的修改或者增加大量的数据之后,或者表的查询非常慢时,应该在这些表上执行 DBCC SHOWCONTIG语句。当执行DBCC SHOWCONTIG语句时,应该考虑这些因素:当执行DBCC SHOWCONTIG语句时,SQL Server要求指定表的ID号或者索引的ID号,表的ID号或者索引的ID号可以从系统表sysindexes中得到;应该确定多长时间使用一次 DBCC SHOWCONTIG语句,这个时间长度要根据表的活动情况来定,每天、每周或者每月都可以。
使用DBCC DBREINDEX语句重建表的一个或者多个索引。当希望重建索引和当表上有主键约束或者唯一性键约束时,执行DBCC DBREINDEX语句。除此之外,执行DBCC DBREINDEX语句还可以重新组织叶级索引页的存储空间、删除碎块和重新计算索引统计。当使用执行DBCC DBREINDEX语句时,应该考虑这些因素:根据指定的填充度,系统重新填充每一个叶级页;使用DBCC DBREINDEX语句重建主键约束或者唯一性键约束的索引;使用SORTED_DATA_REORG选项可以更快地创建聚簇索引,如果没有排列关键值, 那么不能使用DBCC DBREINDEX语句;DBCC DBREINDEX语句不支持系统表。另外,还可以使用数据库维护规划向导自动地进行重建索引的进程。
统计信息是存储在SQL Server中的列数据的样本。这些数据一般地用于索引列,但是还可以为非索引列创建统计。SQL Server维护某一个索引关键值的分布统计信息,并且使用这些统计信息来确定在查询进程中哪一个索引是有用的。查询的优化依赖于这些统计信息的分布准确 度。查询优化器使用这些数据样本来决定是使用表扫描还是使用索引。当表中数据发生变化时,SQL Server周期性地自动修改统计信息。索引统计被自动地修改,索引中的关键值显著变化。统计信息修改的频率由索引中的数据量和数据改变量确定。例如,如 果表中有10000行数据,1000行数据修改了,那么统计信息可能需要修改。然而,如果只有50行记录修改了,那么仍然保持当前的统计信息。除了系统自 动修改之外,用户还可以通过执行UPDATE STATISTICS语句或者sp_updatestats系统存储过程来手工修改统计信息。使用UPDATE STATISTICS语句既可以修改表中的全部索引,也可以修改指定的索引。
使用SHOWPLAN和STATISTICS IO语句可以分析索引和查询性能。使用这些语句可以更好地调整查询和索引。SHOWPLAN语句显示在连接表中使用的查询优化器的每一步以及表明使用哪一 个索引访问数据。使用SHOWPLAN语句可以查看指定查询的查询规划。当使用SHOWPLAN语句时,应该考虑这些因素。SET SHOWPLAN_ALL语句返回的输出结果比SET SHOWPLAN_TEXT语句返回的输出结果详细。然而,应用程序必须能够处理SET SHOWPLAN_ALL语句返回的输出结果。SHOWPLAN语句生成的信息只能针对一个会话。如果重新连接SQL Server,那么必须重新执行SHOWPLAN语句。STATISTICS IO语句表明输入输出的数量,这些输入输出用来返回结果集和显示指定查询的逻辑的和物理的I/O的信息。可以使用这些信息来确定是否应该重写查询语句或者 重新设计索引。使用STATISTICS IO语句可以查看用来处理指定查询的I/O信息。
就象SHOWPLAN语句一样,优化器隐藏也用来调整查询性能。优化器隐藏可以对查询性能提供较小的改进,并且如果索引策略发生了改变,那么这种优化器隐 藏就毫无用处了。因此,限制使用优化器隐藏,这是因为优化器隐藏更有效率和更有柔性。当使用优化器隐藏时,考虑这些规则:指定索引名称、当 index_id为0时为使用表扫描、当index_id为1时为使用聚簇索引;优化器隐藏覆盖查询优化器,如果数据或者环境发生了变化,那么必须修改优 化器隐藏。
索引调整向导
索引调整向导是一种工具,可以分析一系列数据库的查询语句,提供使用一系列数据库索引的建议,优化整个查询语句的性能。对于查询语句,需要指定下列内容:
查询语句,这是将要优化的工作量
包含了这些表的数据库,在这些表中,可以创建索引,提高查询性能
在分析中使用的表
在分析中,考虑的约束条件,例如索引可以使用的最大磁盘空间
这里指的工作量,可以来自两个方面:使用SQL Server捕捉的轨迹和包含了SQL语句的文件。索引调整向导总是基于一个已经定义好的工作量。如果一个工作量不能反映正常的操作,那么它建议使用的索 引不是实际的工作量上性能最好的索引。索引调整向导调用查询分析器,使用所有可能的组合评定在这个工作量中每一个查询语句的性能。然后,建议在整个工作量 上可以提高整个查询语句的性能的索引。如果没有供索引调整向导来分析的工作量,那么可以使用图解器立即创建它。一旦决定跟踪一条正常数据库活动的描述样 本,向导能够分析这种工作量和推荐能够提高数据库工作性能的索引配置。
索引调整向导对工作量进行分析之后,可以查看到一系列的报告,还可以使该向导立即创建所建议的最佳索引,或者使这项工作成为一种可以调度的作业,或者生成一个包含创建这些索引的SQL语句的文件。
索引调整向导允许为SQL Server数据库选择和创建一种理想的索引组合和统计,而不要求对数据库结构、工作量或者SQL Server内部达到专家的理解程度。总之,索引调整向导能够作到以下几个方面的工作:
通过使用查询优化器来分析工作量中的查询任务,向有大量工作量的数据库推荐一种最佳的索引混合方式
分析按照建议作出改变之后的效果,包括索引的用法、表间查询的分布和大量工作中查询的工作效果
为少量查询任务推荐调整数据库的方法
通过设定高级选项如磁盘空间约束、最大的查询语句数量和每个索引的最多列的数量等,允许定制推荐方式
图解器
图解器能够实时抓取在服务器中运行的连续图片,可以选取希望监测的项目和事件,包括Transact-SQL语句和批命令、对象的用法、锁定、安全事件和 错误。图解器能够过滤这些事件,仅仅显示用户关心的问题。可以使用同一台服务器或者其他服务器重复已经记录的跟踪事件,重新执行那些已经作了记录的命令。 通过集中处理这些事件,就能够很容易监测和调试SQL Server中出现的问题。通过对特定事件的研究,监测和调试SQL Server问题变得简单多了。
查询处理器
查询处理器是一种可以完成许多工作的多用途的工具。在查询处理器中,可以交互式地输入和执行各种Transact-SQL语句,并且在一个窗口中可以同时 查看Transact-SQL语句和其结果集;可以在查询处理器中同时执行多个Transact-SQL语句,也可以执行脚本文件中的部分语句;提供了一 种图形化分析查询语句执行规划的方法,可以报告由查询处理器选择的数据检索方法,并且可以根据查询规划调整查询语句的执行,提出执行可以提高性能的优化索 引建议,这种建议只是针对一条查询语句的索引建议,只能提高这一条查询语句的查询性能。
系统为每一个索引创建一个分布页,统计信息就是指存储在分布页上的某一个表中的一个或者多个索引的关键值的分布信息。当执行查询语句时,为了提高查询速度 和性能,系统可以使用这些分布信息来确定使用表的哪一个索引。查询处理器就是依赖于这些分布的统计信息,来生成查询语句的执行规划。执行规划的优化程度依 赖于这些分布统计信息的准确步骤的高低程度。如果这些分布的统计信息与索引的物理信息非常一致,那么查询处理器可以生成优化程度很高的执行规划。相反,如 果这些统计信息与索引的实际存储的信息相差比较大,那么查询处理器生成的执行规划的优化程度则比较低。
查询处理器从统计信息中提取索引关键字的分布信息,除了用户可以手工执行UPDATE STATISTICS之外,查询处理器还可以自动收集统计这些分布信息。这样,就能够充分保证查询处理器使用最新的统计信息,保证执行规划具有很高的优化 程度,减少了维护的需要。当然,使用查询处理器生成的执行规划,也有一些限制。例如,使用执行规划只能提高单个查询语句的性能,但是可能对整个系统的性能 产生正面的或者付面的影响,因此,要想提高整个系统的查询性能,应该使用索引调整向导这样的工具。
结论
在以前的SQL Server版本中,在一个查询语句中,一个表上最多使用一个索引。而在SQL Server 7.0中,索引操作得到了增强。SQL Server现在使用索引插入和索引联合算法来实现在一个查询语句中的可以使用多个索引。共享的行标识符用于连接同一个表上的两个索引。如果某个表中有一 个聚簇索引,因此有一个聚簇键,那么该表上的全部非聚簇索引的叶节点使用该聚簇键作为行定位器,而不是使用物理记录标识符。如果表中没有聚簇索引,那么非 聚簇索引继续使用物理记录标识符指向数据页。在上面的两种情况中,行定位器是非常稳定的。当聚簇索引的叶节点分开时,由于行定位器是有效的,所以非聚簇索 引不需要被修改。如果表中没有聚簇索引,那么页的分开就不会发生。而在以前的版本中,非聚簇索引使用物理记录标识符如页号和行号,作为行的定位器。例如, 如果聚簇索引(数据页)发生分解时,许多记录行被移动到了一个新的数据页,因此有了多个新的物理记录标识符。那么,所有的非聚簇索引都必须使用这些新的物 理记录标识符进行修改,这样就需要耗费大量的时间和资源。
索引调整向导无论对熟练用户还是新用户,都是一个很好的工具。熟练用户可以使用该向导创建一个基本的索引配置,然后在基本的索引配置上面进行调整和定制。新用户可以使用该向导快速地创建优化的索引。
参考:
I. 数据库索引有什么作用和好处
数据库索引是为了增加查询速度而对表字段附加的一种标识。见过很多人机械的理解索引的概念,认为增加索引只有好处没有坏处。这里想把之前的索引学习笔记总结一下: 首先明白为什么索引会增加速度,DB在执行一条Sql语句的时候,默认的方式是根据搜索条件进行全表扫描,遇到匹配条件的就加入搜索结果集合。如果我们对某一字段增加索引,查询时就会先去索引列表中一次定位到特定值的行数,大大减少遍历匹配的行数,所以能明显增加查询的速度。那么在任何时候都应该加索引么?这里有几个反例:1、如果每次都需要取到所有表记录,无论如何都必须进行全表扫描了,那么是否加索引也没有意义了。2、对非唯一的字段,例如“性别”这种大量重复值的字段,增加索引也没有什么意义。3、对于记录比较少的表,增加索引不会带来速度的优化反而浪费了存储空间,因为索引是需要存储空间的,而且有个致命缺点是对于update/insert/delete的每次执行,字段的索引都必须重新计算更新。 那么在什么时候适合加上索引呢?我们看一个Mysql手册中举的例子,这里有一条sql语句: SELECT c.companyID, c.companyName FROM Companies c, User u WHERE c.companyID = u.fk_companyID AND c.numEmployees >= 0 AND c.companyName LIKE '%i%' AND u.groupID IN (SELECT g.groupID FROM Groups g WHERE g.groupLabel = 'Executive') 这条语句涉及3个表的联接,并且包括了许多搜索条件比如大小比较,Like匹配等。在没有索引的情况下Mysql需要执行的扫描行数是77721876行。而我们通过在companyID和groupLabel两个字段上加上索引之后,扫描的行数只需要134行。在Mysql中可以通过Explain Select来查看扫描次数。可以看出来在这种联表和复杂搜索条件的情况下,索引带来的性能提升远比它所占据的磁盘空间要重要得多。 那么索引是如何实现的呢?大多数DB厂商实现索引都是基于一种数据结构——B树。因为B树的特点就是适合在磁盘等直接存储设备上组织动态查找表。B树的定义是这样的:一棵m(m>=3)阶的B树是满足下列条件的m叉树: 1、每个结点包括如下作用域(j, p0, k1, p1, k2, p2, ... ki, pi) 其中j是关键字个数,p是孩子指针 2、所有叶子结点在同一层上,层数等于树高h 3、每个非根结点包含的关键字个数满足[m/2-1]<=j<=m-1 4、若树非空,则根至少有1个关键字,若根非叶子,则至少有2棵子树,至多有m棵子树 看一个B树的例子,针对26个英文字母的B树可以这样构造: 可以看到在这棵B树搜索英文字母复杂度只为o(m),在数据量比较大的情况下,这样的结构可以大大增加查询速度。然而有另外一种数据结构查询的虚度比B树更快——散列表。Hash表的定义是这样的:设所有可能出现的关键字集合为u,实际发生存储的关键字记为k,而|k|比|u|小很多。散列方法是通过散列函数h将u映射到表T[0,m-1]的下标上,这样u中的关键字为变量,以h为函数运算结果即为相应结点的存储地址。从而达到可以在o(1)的时间内完成查找。
然而散列表有一个缺陷,那就是散列冲突,即两个关键字通过散列函数计算出了相同的结果。设m和n分别表示散列表的长度和填满的结点数,n/m为散列表的填装因子,因子越大,表示散列冲突的机会越大。
因为有这样的缺陷,所以数据库不会使用散列表来做为索引的默认实现,Mysql宣称会根据执行查询格式尝试将基于磁盘的B树索引转变为和合适的散列索引以追求进一步提高搜索速度。我想其它数据库厂商也会有类似的策略,毕竟在数据库战场上,搜索速度和管理安全一样是非常重要的竞争点。
J. 数据库索引是什么,有什么用,怎么用
1、数据库索引是什么,有什么用
数据库索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息。如果想按特定职员的姓来查找他或她,则与在表中搜索所有的行相比,索引有助于更快地获取信息。
索引的一个主要目的就是加快检索表中数据的方法,亦即能协助信息搜索者尽快的找到符合限制条件的记录ID的辅助数据结构。
2、数据库索引的用法
当表中有大量记录时,若要对表进行查询,第一种搜索信息方式是全表搜索,是将所有记录一一取出,和查询条件进行一一对比,然后返回满足条件的记录,这样做会消耗大量数据库系统时间,并造成大量磁盘I/O操作;
第二种就是在表中建立索引,然后在索引中找到符合查询条件的索引值,最后通过保存在索引中的ROWID(相当于页码)快速找到表中对应的记录。
索引是一个单独的、物理的数据库结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识值的数据页的逻辑指针清单。
(10)数据库索引使用扩展阅读:
一、索引的原理:
对要查询的字段建立索引其实就是把该字段按照一定的方式排序;建立的索引只对该字段有用,如果查询的字段改变,那么这个索引也就无效了,比如图书馆的书是按照书名的第一个字母排序的,那么你想要找作者叫张三的就不能用改索引了;还有就是如果索引太多会降低查询的速度。
二、数据库索引的特点:
1、避免进行数据库全表的扫描,大多数情况,只需要扫描较少的索引页和数据页,而不是查询所有数据页。而且对于非聚集索引,有时不需要访问数据页即可得到数据。
2、聚集索引可以避免数据插入操作,集中于表的最后一个数据页面。
3、在某些情况下,索引可以避免排序操作。