响度参考
① 怎样区分音调和响度
音调
定义:声音的高低叫音调:
决定因素:音调又频率决定。频率越高,音调就越高;频率越低,音调就越低。
响度
定义:声音的大小(或强度)叫响度;
决定因素:
1与发声的振幅有关;
2与发声的距离有关;
3与声音的散发程度有关。
练习
1女同学说话的声音尖细是指女同学声音的_____高,这是因为女童学说话时声带振动______.
2“闻其声而知其人”,这句话表明不同人发出的声音具有不同的( )
A.音调
B.响度
C.音色
D.频率
答案:
1.音调 快
2.C
② 响度的大小跟什么有关
声音的强弱叫做响度。响度是感觉判断的声音强弱,即声音响亮的程度,根据它可以把声音排成由轻到响的序列。 响度的大小主要依赖于声强,也与声音的振幅有关。振幅越大,响度越大;振幅越小,响度越小。此外,响度还与距离发生体的远近有关,距离发声体越近,响度就越大。
③ 声音的响度(分贝)在多少以上多少以下时,人耳能听到
声音在20赫兹以上时,人耳能听到。在20000赫兹以下时,人耳能听到。
④ 响度与db(分贝)的联系与区别
分贝(dB)只是一个单位,比如声压级、声强级等。一般是正比于物理量和参考值之比值取对数后的量。声压、声强都是客观量,表征的是声音实际振动的大小或强度。声强增加一倍,声音高3dB[=10log(10,2)]。
响度是表征人耳对声音的响应,这个量实际是带有主观有经验成分在内(实际上也给出了标准响度曲线),不同频率虽然声强相同,但响度不同。一般用的单位是方(phon)或宋(sone)。定义人耳听到频率1kHz,声压级40dB的声音响度为1宋,或者40方。
响度级每增加1宋或者说10方,响度增加一倍。
从定义可以看出,声强级、响度级这些都是相对量,也可以说是无单位的。
⑤ 分贝大小和声音响度的关系
声音越大,分贝数越大,而声音的大小与物体振动的振幅和离发声物体的距离有关,所以突然改变音量,可能音量是80分贝一下子就20了。而原来房间有20分贝,再发出80分贝的声音,分贝数有增加。
物体发出声音的大小(响度),对同一物体而言,与振动的能量有关。能量 越大,响度 越大。而振动的能量,与振幅相关。而对于不同的材质,也会影响它发出的声音大小(响度)。而听到 的声音响度,则还与距离振动物体的距离相关。越远,响度越小。
(5)响度参考扩展阅读:
分贝是较常用的计量单位。可表示为:
1、表示功率量之比的一种单位,等于功率强度之比的常用对数的10倍。
2、表示场量之比的一种单位,等于场强幅值之比的常用对数的20倍。
3、声压级的单位,大约等于人耳通常可觉察响度差别的最小分度值。
分贝最初来源于长途电讯的计测, 后被广泛应用在电工、无线电、力学、冲击振动、机械功率和声学等领域。
⑥ 响度均衡什么意思
响度均衡,通常指双耳交替响度平衡试验,是常用的鉴别是否有重振现象的检查。
在纯音听阈测试的基础上,双耳选择同一频率,通常为1 kHz或2 kHz进行测试。以健耳或相对健耳为参照耳,患耳为变耳。先在健耳或相对健耳阈上给一测试声,随即调节患耳或听力较差耳的声音强度,至受试者感觉双耳响度相等为止。
再在健耳或相对健耳以10 dB~20 dB一档增加声音强度,每增加一档后,调节患耳或听力较差耳的声音强度,至两耳响度一致为止。如此逐次提高两耳测试声的强度,于听力表上分别记录两耳响度一致时的声音强度,并划线连接。
(6)响度参考扩展阅读:
通常情况下,双耳交替响度平衡试验只适合测试单侧听力损失者,当双耳均有听力损失,且每侧耳都有一些频率的听阈正常时,可使用单耳响度平衡试验(MLB)。也就是说,ABLB是比较同一频率上双耳的响度差异,而MLB是就同一侧耳不同频率上的响度差异进行比较。许多研究表明,耳蜗病变出现重振的百分比高于蜗后病变。
当两耳最终在同一强度感到响度一致或有在某一强度上达到响度一致的趋势时,表示有重振。若两耳达到响度一致时声音强度的差别始终维持于双耳听阈的差别上,表示无重振。
⑦ 响度与音调的区别
音调:音调是指声音的高低。音调与发声体振动的频率有关:发声体振动的频率越高,音调越高,频率越低,音调越低。
响度:响度是指声音的强弱。响度与发声体的振幅有关:振幅越大,响度越大,振幅越小,响度越小;响度还跟距离发声体的远近有关:距离发声体越近,响度越大,距离发声体越远,响度越小。
注意:
(1)响度与音调毫无关系,是根本不同的两个特征。打鼓发出的声音响度大而音调低,小鸟的鸣叫声音响度小而音调高。一般情况下,男同学说话响度大而音调低,女同学说话则响度小而音调高。
(2)要注意区分日常生活语言和物理语言的不同。“女高音歌唱家”和“男低音歌唱家”,中的“高”与“低”指的是音调;“高声呼叫”和“低声细语”中的“高”和“低”指的是响度。
⑧ 音调和响度怎么区别
1、含义不同
音调是指声音频率的高低
响度是指人耳感觉到的声音的强弱
2、影响因素不同
音调主要由声音的频率决定,同时也与声音强度有关。对一定强度的纯音,音调随频率的升降而升降;对一定频率的纯音、低频纯音的音调随声强增加而下降,高频纯音的音调却随强度增加而上升。
响度的大小决定于声音接收处的波幅,就同一声源来说,波幅传播的愈远,响度愈小;当传播距离一定时,声源振幅愈大,响度愈大。响度的大小与声强密切相关,但响度随声强的变化不是简单的线性关系,而是接近于对数关系。当声音的频率、声波的波形改变时,人对响度大小的感觉也将发生变化。
3、举例:
“震耳欲聋”、“轻声细语”指的是响度
“尖锐刺耳”“低沉浑厚”是指音调
⑨ 响度的响度最大
怎么样在不让音轨失真的情况下让声响感到更大些?或者有没什么效果来增强音量的?
成音(final mixes)声响最大化是个比较有争议的话题,不同的专业工程师在这个问题上有一定的分歧。假设你的成音已经峰值达到0dBFS,再增加响度就会有点危险,因为不可避免地会在某种程度上改变所录制的波形。这种任何特别的音频处理所导致的折衷,和音响增加相比,哪个重要,你要好好思量一下。
最好的策略是,把你的成音放在DAW中,和你所选择的感觉较牛X的商业成音放在一起,然后处理你的混音,直到和标准感觉一致为止。您的监听设备越好,你的判断力才能够越好。(如果用普通的监听,声响上可能会做得过度,因为你无法精确分辨出信号品质到底降低到何地步)。
那么该尝试一下哪些处理呢?“毒性最小的”增加音量的方法我想应该是让混音通过截止频率非常低的高通滤波器。如果所录的音轨上有直流(0Hz)信号的话,这可以偏移整体音频波形,使其中的削波出现地比原先更早;而高通滤波器可以去除掉。你还可以用高通滤波器来截去你不想要的低频隆声,这样就可以给整体音轨电平更大的余量。
我们还要用下均衡器,值得一提的是,人耳其实对高频与低频都不是特别敏感,但对中频非常敏感。人们一般都会把较为明亮的声音从心里认为是较为响亮的声音。如果你可以在参考的标准音轨和你自己的音轨之间检测出音调的不同,我推荐轻微调节均衡器和参考轨的声音更象一些。
或许你还想看一下诸如Logic的Match EQ和TC Works的Assimilator,或是独立的工具软件Harbal。这些都可以用来比较参考轨的频率内容和你自己音轨的频率内容,然后会给出建议的均衡曲线,以自动匹配两个音轨。只要确定建议的均衡曲线可能会“加点盐”,因为自动处理不可能十全十美。
精细的磁带、电子管或变压器失真处理也是增加主观响度有意思的一种方法,但实际并没有增加多少计量电平。如果这样的话,这里的软件选项就比较多了,比如Silverspike的免费软件Rubytube 或是内置入Cubase SX2的 Magneto插件。有些不错的硬件如内置入TC Electronic机架处理器的DRG,或是Drawmer的DC2476 Masterflow设备里的有趣的多段电子管处理。
压缩在声响上的增加绝对明显,特别是对于低比率(低于1.3:1)和低门阈(大致在-30dBFS与-50dBFS之间)设置来说。完全波段的呀在这个角色上音调更明显,但多短类型的压缩器则相对带来的假声更少。
对于摇滚与舞曲音乐风格,全波段的较高门阈及比率设置的压缩,经过压缩效果后响度够劲。如果你想试验一下的话,从2:1比率开始,1ms的起音时间,100ms的释音时间。然后再设置门阈电平,这样压缩器主要减少的是鼓击的增益,你会听到压缩器处理的效果,然后再调节比率及释音时间来调整力度。
如果你发现压缩器的效果,对底鼓的低频部分有所伤害的话,那么就增加压缩器的起音时间,让更多声音在压缩器削减前经过。另外还可以使用高通滤波器处理压缩器的旁链来减少低频增益衰减的因素。
限制器有时也用来增加响度,在正常情况下可以增加几个分贝而无何损失。2013年的全波段和多段型号都有,但有一个旁侧效果这些都没有,就是这些效果感觉让音轨中的重击鼓声好像被吸到混音中一样。如果打击素材少的还行,这个可以作个折中,主要看限制器的释音时间如何设置,不过也要注意限制器处理的副效果(pumping)和低音失真。
如果上面几种方法都试了感觉还不行,那么就该放大一下参考音轨的波形,看一下它们是否有限幅(clipping)现象。尽管很多工程师不太赞成限幅现象,但实际上的情况是,商业发行里经常存在,这是个事实。所以,你需要考虑一下限幅的立场。限幅的坏处之一是,它是一种失真,本身并不音乐化。不过许多工程师认为某种程度的限幅在某种情况下也可以被巧妙掩盖,主要是为了获得考究的声响。
第一种主要的情形是,当声音本身就模糊失真时(fuzzy),比如失真的电吉他,那么限幅还是很容易混合的。最为典型的例子是The Darkness的《Growing On Me》,Chemical Brothers的《Block Rocking Beats》,以及Pink的《Feel Good Time》。
另外一种限幅的风格是那种鼓机非常重的音乐,比如摇滚和嘻哈,不过一般限幅的也只是鼓拍。除非你搞得很过分,一般的限幅处理人耳感觉就是鼓的音调有点变化而已,而不是失真的感觉,所以很多音乐人都乐于用这种方式来处理。举个例子,Dr Dre在2001的专辑中就在底鼓上有超过100个连续采样上频繁使用限幅,而这种限幅处理方式商业音乐风格绝不是完全拒绝。
⑩ 响度的频率范围
倍频程 频率范围(Hz)
1 20~40
2 40~80
3 80~160
4 160~320
5 320~640
6 640~1280
7 1280~2500
8 2500~5000
9 5000~10000
10 10000~20000
我们把可听声按倍频关系分为3份,确定低、中、高音频段。
即:
低音频段20Hz~160Hz(3倍频)
中音频段160Hz~2500Hz(4倍频)
高音频段2500Hz~20000Hz(3倍频)
人耳对中音频段感受到的声音响度较大,且较平坦。高音频段感受到的声音响度随频率的升高逐渐减弱,为一斜线。低音频段在80Hz以下急剧减弱,斜线陡率较大。我们把低音频段的急剧减弱称为低频“迟钝”现象。
图1 人耳听觉特性曲线
如果我们在某声强级倒置这些等响曲线,就会得出人耳在此曲线上整个频率范围内全部声音的相对频响图。较低曲线倒置,说明在低声强,人耳频响缺乏。相反,倒置较高声强的上部曲线,可达到更平坦的频响。通常把1000Hz曲线作为参考点,对高频和低频而言,人耳的听觉响应在低声强时始终不足。但是人耳对300~6000Hz左右的频段特别敏感。这恰巧是包含大部分人讲话模式的声音以及婴儿啼哭的音调的频率范围。
图2 频响曲线
每条等响曲线被确认为以响度单位“方”表示的声级。在与等响标准音符进行比较时,由于响度等于以分贝表示的声压级,因此“方”是一个响度单位。标准音符是一个1000Hz纯音或中心频率在1000Hz的窄带噪声。要指出的是,只有在图上1000Hz的标准参考点,用“方”表示的声级与以分贝表示的声压级才一致。因此40方等响曲线表示1000Hz处的40dB SPL,但在其它大部分频率上,SPL是不同的。基本上,每个“方”等响曲线代表一个10dB音级,测量值增加3dB,表示声音功率增加2倍。
图2底部的红色虚线表示自由场中人耳听觉灵敏度的最低可闻声级。
这些曲线的使用效果说明,如果我们在校准系统或对音质进行数值评价时,想合成人耳的正常听力表现,某种形式的滤波是需要的。声压级(SPL)表大多用于设置音频系统的听力声级,SPL表包括修正其标度的可选滤波器,因此它可估测出在某一声压级范围内人耳的响应。最常用的滤波器设置是A加权和C加权。它们是什么?与我们的听觉反应有何关系?
加权概念是指滤波器响应的相对整形,因而模仿在某一响度级的人耳。A、B、C和D四种被用来简化并加到等响曲线区域上,这些区域对描述人耳对真实世界应用的频响最有意义。下面的讨论请参照图3。A加权规定滤波器(和人耳响应)在低声压级的波形,即40方等响曲线。以分贝表示的与A加权相关的声级测量值用dB(A)单位表示。此曲线整形意味着测量设备中低频被衰减,而语音频率被放大。B加权描述一个约70方曲线的中等声级。要注意的是此时人耳响应开始平坦。C加权利用100方曲线,它描述人耳对高声级几乎平坦的响应。对典型的家庭影院聆听声级及评估系统的平坦频响特性来说,C加权响应最有用。D加权曲线是一种特例,它是为测试飞机飞行噪声而开发的,它使高频恶化。同样,相对于这些加权曲线的声级测量值被分别记录为dB(B)、dB(C)和dB(D)。A和C加权最常用,因为前者与日常的正常声压级有关,后者与较高听音音量有关(此时人耳响应几乎平坦)。
我们已讲述了某种有意义的背景,但是它们与音频系统响度控制特性都有何关系?了解人耳如何感知与频率相对应的声强可直接引导我们理解响度特性。响度控制就是打算在低声级聆听的时候明显地提升低频和高频,使人耳感知到较平坦的总声压级。换言之,如果在低音量级无法实施等响曲线控制,就显得缺少低音和高音。这种效果相当于前述的A加权情况(这种情况下低和高频都要求额外的放大,使声音动听)。
由于人耳的频响在高声级相对平坦,不需要等响曲线控制的补偿效果。响度特性是一种均衡功能,理想情况下,它应该进行自身调节,以便在低声压级具有较大的补偿效果,而随着声压级增加,补偿效果也越来越小。
从图4可以看出,补偿低频所需的功率量(LA{{A为下角标}}曲线界定的绿色阴影区)很大。因此,在家庭影院音频系统设计中,仅对低频声道使用相当大的分离放大,并不罕见。高频范围内的阴影区表明在某一较低的音量级时这部分频谱所需的相对补偿。在高响度级,人耳的反应接近平坦,补偿需求几乎降到零,如LC{{C为下角标}}曲线所示。
问题在于,执行响度控制功能是像那些过于简单的设计一样,仅使用一个固定设置提升高频和低频,还是动态的,能根据音量控制设置修正均衡量?
从历史上看,大部分响度控制都是模拟实现,使用分立的电阻电容甚至电感逼近A加权函数的补偿曲线(图4中的曲线LA{{}})。大部分是围绕着音量控制而设计的。图5说明一种使用音量控制的简单可行的方案,此方案采用一个旋转半程的第四抽头。阻容网络切入音量控制电路时,提供幅度补偿。对于真正的低成本电路,可能只有低端频率被提升,或许中音域被“切掉”使其听起来较像低端声级。毫无疑问,模拟实现响度功能,特点是五花入门。完全补偿A加权响应需要相对复杂的补偿网络。
图5电路的基本方案是:(1)使用C1提升高频,当响度开关接通时C1与音量控制的上半部并联;(2)选择C2的电容值,使其电抗在高频和中频时较低;(3)选择R使高中频得以衰减;但随着频率下降,C2的电抗会升高,降低低频衰减。这是一种彻头彻尾的性能折衷的简便而低成本的设计方案。
响度均衡电路的现代实现自然而然地落入数字信号处理,即DSP的范畴。在数字处理可实现的众多可能性之中,形成能够模拟接近精确补偿响应的滤波器不仅是可能的,而且一般都是直截了当的。基于DSP的算法实现连续自适应函数,它们随着声压级在其正常变化范围内变化将实时补偿。
各种形式的高速数字信号处理为当今复杂的音频系统最佳实现等响补偿提供各种途径。有了这类工具,工程师们必须回过头来研究Fletcher 和Munson 等人开发的基础知识,吐故纳新,确保我们有最好的机会开发最接近于原始概念的基于数字的产品。但无论如何,我们大家真正关心的都应该是,在我们按下响度钮时,系统应该“优美动听”。