数据库电子商务
① 数据库对电子商务的支持表现在哪些方面
1、产品搜索
2、电子商务网站的访问统计
3、电子商务网站的数据分析
② 电子商务数据库与普通数据库有什么区别
数据库就那么几个,功能和安全不同而已.
常用的ACCESS,SQLSERVER,MYSQL,ORACLE,DB2,SYBASE,其他的就不常用了,其实大多数的功能一般的公司是用不上的,只是为了一种趋势而已啊,基本操作也类似,都支持SQL语言,会这个基本的数据库都能用了,呵呵
③ 大型电商用什么数据库
oracle集群
Oracle RAC是业界最流行的产品。其架构的最大特点是共享存储架构(Shared-disk),整个RAC集群是建立在一个共享的存储设备之上的,节点之间采用 高速网络互连。在 Oracle RAC 环境中,每个 Oracle 数据块都被赋予一个(且只有一个)“主”Oracle RAC 节点。该 Oracle RAC 节点的全局缓存服务 (GCS) 负责管理对这些数据块集的访问。当其中一个 Oracle 节点需要访问某个 Oracle 数据块时,它必须首先与该数据块协商。然后,该主节点的 GCS 或者指示请求的 Oracle 节点从磁盘中获取该数据块,或者指示该Oracle 数据块的当前持有者将被请求的数据块发送到请求节点。Oracle 尝试跨所有 RAC 节点统一分发该数据块的所有权。在 Oracle RAC 环境中,数据块大致相等的所有节点都将被指定为主节点。(如果 Oracle RAC 节点数是 Oracle 数据块数的约数,则所有 RAC 节点都是具有同样数量的数据块的主节点。)
mysql集群
MySQL cluster和Oracle RAC完全不同,它采用Shared-nothing架构。整个集群由管理节点(ndb_mgmd),处理节点(mysqld)和存储节点(ndbd)组 成,不存在一个共享的存储设备。MySQL cluster主要利用了NDB存储引擎来实现,NDB存储引擎是一个内存式存储引擎,要求数据必须全部加载到内存之中。数据被自动分布在集群中的不同存 储节点上,每个存储节点只保存完整数据的一个分片(fragment)。同时,用户可以设置同一份数据保存在多个不同的存储节点上,以保证单点故障不会造成数据丢失。
MySQL cluster的优点在于其是一个分布式的数据库集群,处理节点和存储节点都可以线性增加,整个集群没有单点故障,可用性和扩展性都可以做到很高,更适合 OLTP应用。但是它的问题在于:1.NDB存储引擎必须要求数据全部加载到内存之中,限制比较大,但是目前NDB新版本对此做了改进,允许只在内存中加 载索引数据,数据可以保存在磁盘上。2.目前的MySQL cluster的性能还不理想,因为数据是按照主键hash分布到不同的存储节点上,如果应用不是通过主键去获取数据的话,必须在所有的存储节点上扫描, 返回结果到处理节点上去处理。而且,写操作需要同时写多份数据到不同的存储节点上,对节点间的网络要求很高。
分布式数据库拆分
数据库分片
Sharding 不是一个某个特定数据库软件附属的功能,而是在具体技术细节之上的抽象处理,是水平扩展(Scale Out,亦或横向扩展、向外扩展)的解决方案,其主要目的是为突破单节点数据库服务器的 I/O 能力限制,解决数据库扩展性问题。
把热度高的数据划分开来,使用配置刚好的硬件,提高访问速度,增强用户体验
把不同的用户的数据根据用户的id放到不同的数据库中,不同用户对应的交易数据也跟着到不同的数据库;之后可以把交易完成和正在交易的数据库分开。
一个全国经济信息系统,可以按照不同地区把不同数据放到不同数据库中,随着时间增加数据也会越来越大,到时还可以工具年份在重新划分数据库。
一个大中型的电子商的电子商务网站一定会遇到数据量巨大的问题,可以根据用户对象或者使用和被使用的数据进行分片。这样避免了在一个库中数据膨胀而带来的瓶颈。
在数据库分片时最好分到不同的服务器中,或者不同的存储中,避免磁盘竞争
数据库分片存在比较大问题就是人查询或者统计涉及到跨库就比较麻烦。特别是join时如果涉及到多个节点,将非常困难,应该尽量避免。
数据库水平分片
读写分离
读写分离架构利用了数据库的复制技术,将读和写分布在不同的处理节点上,从而达到提高可用性和扩展性的目的。
读写分离简单的说是把对数据库读和写的操作分开对应不同的数据库服务器,这样能有效地减轻数据库压力,也能减轻io压力。主数据库提供写操作,从数据库提供读操作,其实在很多系统中,主要是读的操作。当主数据库进行写操作时,数据要同步到从的数据库,这样才能有效保证数据库完整性。Quest SharePlex就是比较牛的同步数据工具,听说比oracle本身的流复制还好,mysql也有自己的同步数据技术。mysql只要是通过二进制日志来复制数据。通过日志在从数据库重复主数据库的操作达到复制数据目的。这个复制比较好的就是通过异步方法,把数据同步到从数据库。
主数据库同步到从数据库后,从数据库一般由多台数据库组成这样才能达到减轻压力的目的。读的操作怎么样分配到从数据库上?应该根据服务器的压力把读的操作分配到服务器,而不是简单的随机分配。mysql提供了MySQL-Proxy实现读写分离操作。不过MySQL-Proxy好像很久不更新了。oracle可以通过F5有效分配读从数据库的压力。
上面说的数据库同步复制,都是在从同一种数据库中,如果我要把oracle的数据同步到mysql中,其实要实现这种方案的理由很简单,mysql免费,oracle太贵。好像Quest SharePlex也实现不了改功能吧。好像现在市面还没有这个工具吧。那样应该怎么实现数据同步?其实我们可以考虑自己开发一套同步数据组件,通过消息,实现异步复制数据。其实这个实现起来要考虑很多方面问题,高并发的问题,失败记录等。其实这种方法也可以同步数据到memcache中。听说oracle的Stream也能实现,不过没有试过。
通过ebay读写分离的结构图,通过Share Plex 近乎实时的复制数据到其他数据库节点,再通过F5特定的模块检查数据库状态,并进行负载均衡,IO 成功的做到了分布,读写分离,而且极大的提高了可用性。目前读写分离技术比较多,比较有名的为amoeba,有兴趣的同学可以研究下。
数据库缓存
读写分离现在应用非常广泛,特别是时国内外大型网站,都使用的非常多,很多都是自己研发缓存系统,淘宝还开源了Tair系统,有兴趣的可以研究下。比较有名的是memcached使用memcached最好的可能算facebook了。通过memcached分担读的操作,把常用的对象数据存储到memcached中,当有读操作过来时先访问memcached如果memcached没有该数据再从数据库获取,同时把数据放到memcached中,下次访问就可以直接访问memcached了。
有一次在和一个朋友聊天时他们正在着手在线文档系统架构设计,由于文档访问压力非常大,每次请求数据库也非常大,由于大量的的文档数据在服务端和客户端传输,会经常造成网络堵塞。我建议他可以把文档分片,减少一次性大文件传输。再根据文档热度把一些文档保持到缓存中。其实文档也好,数据库也好,很多方法只要根据业务要求也可以达到异曲同工的之效。
④ 带数据库电子商务源代码
电子商务和电子商务网站源代码是两码事 一个是专业 一个是程序代码
⑤ 电子商务类网站需要什么数据库
电子商务类网站需要的数据库主要有以下两种:
Windows Server 2003/2008+ASP.NET+IIS+MS SQL Server 2005/2008;
Linxu/Unix+PHP+Apache+MySQL。
电子商务企业数据库必须具备的三大特性:
符合ACID原则:为了尽可能创建完美的用户体验,数据库需要一个可以在每个事务中保证原子性、一致性、隔离性和持久性的数据库,符合ACID的数据库将会确保数据库事务正确地完成,这意味着客户可以在网站上获得他们所查询的返回值和正确的产品可用性;
可扩展性:MySQL数据库可以处理海量数据,但由于MySQL只能够'向上扩展',因此在某种程度上,单一成本、大排量的主服务器将会出现瓶颈,所以,与其让电子商务平台最终走投无路,技术人员应该考虑利用水平可伸缩的云数据库,数据库可以很容易地扩展,以适应大流量的冲击;
可用性高:如果数据库和系统处于关闭状态,客户会对你的品牌失去信心,所以需要可用性高的数据库,可用性高的数据库可以确保良好的用户体验,同时还产生收入双赢的局面。
⑥ 数据库与电子商务有什么联系
数据库就是记录保存的系统,类似于
U盘,把你的资料和
信息存储
进去。
电子商务就是在网上利用电子的模式经营生意,赚钱。。
那么在
网上赚钱
肯定会产生数据和信息,那么这些信息就要依靠数据库来帮你保存和记录。。
联系就是数据库是电子商务的工具。
⑦ 数据库技术对电子商务的支持主要表现在哪些方面
数据库是网络应用的基础,因此对电子商务也是有举足轻重的影响。如可以对数据库里采集到的客户数据进行分析,从而了解到消费者的消费趋向或是客户所关注的信息,这样就可以采取针对性的营销。还有很多,有技巧、有创新地运用好数据库对做好电子商务起到很大的作用。
(7)数据库电子商务扩展阅读:
数据模型:
数据模型的概念及要素数据模型是现实世界在数据库中的抽象,也是数据库系统的核心和基础.数据模型通常包括3个要素:
⑴数据结构.数据结构主要用于描述数据的静态特征,包括数据的结构和数据间的联系。
⑵数据操作.数据操作是指在数据库中能够进行的查询,修改,删除现有数据或增加新数据的各种数据访问方式,并且包括数据访问相关的规则。
⑶数据完整性约束.数据完整性约束由一组完整性规则组成。
数据库理论领域中最常见的数据模型主要有层次模型,网状模型和关系模型3种.
⑴层次模型(Hierarchical Model).层次模型使用树形结构来表示数据以及数据之间的联系.
⑵网状模型(Network Model).网状模型使用网状结构表示数据以及数据之间的联系.
⑶关系模型(Relational Model).关系模型是一种理论最成熟,应用最广泛的数据模型.在关系模型中,数据存放在一种称为二维表的逻辑单元中,整个数据库又是由若干个相互关联的二维表组成的.
⑧ 电子商务与数据库之间的关系
建立电子商务网站,最主要的是要能与访问者互动。而一个互动网,它必须是由非静态网页(html)来完成,这种可以交互的动态网页一般是由ASP、PHP、JSP、CGI、等语言写的,它们都需要有一个像ACCESS、 MS-SLQ、 My-SQL等数据库来存储访问者的交互信息,也就是说一个电子商务网数据库
⑨ 数据库在电子商务的应用和发展前景是什么
至少在目前,我认为电子商务发展中,是必须要用到数据库存储数据信息的!
⑩ 为什么说数据库在电子商务中占有重要的地位
电子商务:通俗来说就是企业通过网络,把线下的业务移到线上去开展,完成商品或者服务的销售交易。
大数据:指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
近几年来,互联网产业高速发展,很多传统企业通过电子商务,开展网络营销,线上产生交易的数据量是线下无法比的,因而就产生了处理巨量资料,也就是大数据的急迫需求,解决不好,就成为电子商务发展的瓶颈。反之,大数据处理的成功发展,也促进了企业加速开展电子商务,为互联网产业的发展注入新动力。
一、大数据处理模式
在电子商务领域内,信息的大批量处理如果是以PB、EB、ZB为计量单位,则这些信息就构成了大数据。以往的计算机处理模式已经很难对这些大数据进行高效率的处理,势必会影响电子商务的总体发展。因此对大数据时代的计算机处理模式进行革新是获得电商行业整体突破的基本保证。传统的数据处理模式是数据库集群模式,大数据处理模式的基本要求是建构云计算Map Rece处理体系,使信息的分解处理和结果合并成为可能。
(一)数据库集群模式
集群模式的基本运行原理是将同一种应用程序通过不同的工作方法相互协调共同完成,在面对客户端的数据请求时,为其提供单一映像,并将这些映像通过一定的连接技术和方法与硬件系统进行连接,整体上建构一个松散耦合的集合。简单来说,数据库集群模式实现了数据库技术和集群技术的结合。数据库集群模式的运行较为平稳,具有多方面的技术优势,例如强大的靠扩展性、整体的可靠性等等。
但是在面对大数据处理时,数据库集群也表现出了一定的缺陷。这些缺陷主要包含以下方面:第一是可扩展性补不强。如果系统功能节点的硬件基础设施选择的是Pc服务器,那么将会出现系统线缆繁杂、硬件高度复杂化和架设安装难度大等问题,对其扩展性造成了一定的限制;第二是数据通信受限。目前运行高速互联网的必备条件是将 PCI插槽与主机进行连接。但是PCI的数据传送能力有限,不能满足节点间的数据通信要求;第三是提升空间小。这种空间主要是指数据库数据集的可扩展空间,在进行数据处理时如何解决系统的安全性、运算速度和可扩展性是数据库集群模式要面对的重要问题。此外,数据库集群模式还存在兼容性、可靠性、容错性、对异质条件支持能力等方面的局限性。
(二)Map Rece框架
云计算构架主要是由低端服务器进行大规模集群构成的数据处理技术,在数据存储容量和数据处理能力上具有绝对的优势。由于云计算平台在运行中的可靠性和可扩展性等功能,目前众多的大型企业或单位都将其作为web搜索和大数据分析的主要平台,如中国移动、淘宝、网易、网络等等。Map Rece框架主要包含三个方面的内容,即并行编程模型Map Rece、分布式文件系统(HDFs)、并行执行引擎。
Map Rece的设计是由google完成的,主要是进行大数据集的计算处理工作,代表了分析技术的整体发展状态。Map Rece在进行数据处理时,先将对象进行抽象化处理,使其以映射和化简操作对的形式呈现出来,其中映射部分进行数据的过滤,化简部分进行数据的聚集工作,在工作中均以良好的界面进行管理工作。对Map Rece计算过程进行分解,可以将其工作原理理解为将大数据集进行解构,解构之后的结果是形成了数量众多的小数据集,通过集群节点对这些小数据集进行分别处理,由此得出中间结果,将这些结果通过节点进行合并,就可以得出对整个大数据集的处理结果。
二、大数据时代电子商务IT技术设施的革新
IT基础设施是保证电子商务系统运行的前提,对其进行技术革新能够使其快速适应电子商务大数据时代。在后互联网技术时代,电子商务企业广泛采用的IT基础设施一般是PC服务器。随着数据信息处理规模的扩大和处理能力的要求不断增强,电子商务企业对于IT基础设施的革新正朝着小型化和集群化方向发展,与此同时,电商企业还需要不断地投入大量的人力和技术实现IT基础设施的维护、升级和更新。
(一)数据仓库的发展
从近期对电子商务信息处理数据的研究可以发现,在系统运行中出现的大数据仍在以惊人的速度发展和增长,其特点也表现为明显的分布式发展和异构性趋势。传统的数据库如具备一般数据处理功能和信息分析技术的数据库以及BI技术已经很大程度上不能满足PB级的数据量处理要求。这种大规模数据的发展促使电子商务数据仓库系统出现了非常明显的变革,也即是数据量数量级不断上调,目前已经实现了由TB向PB的迈进,并且仍呈现出爆炸性的增长态势。
根据对现今电商数据量发展状况及趋势的研究,可以发现电子商务数据仓库将会呈现以下特点:第一,未来两年电商数据仓库的最大数据量将会达到甚至超过 1OOPB,并且其增长速度也将呈现出前所未有的变化,远远超过摩尔定律;第二,对数据的分析方式实现质的变化,将从常规化分析向深度化分析转变;第三,中低端硬件组成的大规模集群硬件平台将会代替高端服务器构成的基础设施硬件支持平台,基础设施进一步向集群化发展;由于硬件系统的革新将会对并行数据库产生了重要影响,使其规模不断扩大,由此带来的成本也将逐渐增长。总体来讲,目前电子商务将会出现大规模革新的直接因素是数据量的大规模增长和深度分析的现实要求。
(二)云计算构架
云计算构架是一种针对分布式网络计算而设计的新型数据处理模式,在应用中已经表现出了良好的适应性。在网络环境中进行计算、存储、软件等在线服务时较传统构架有显著的性能提升。在目前应用于电子商务领域内的云计算构架来讲,其具备了以下特征:按需自助服务(on Demand self-service)、可度量服务(measured service)、池化资源(resource pooling)、泛化网络访问((broad network access)以及快速弹性(rapid elasticity)。
三、大数据处理对电子商务的影响
云计算的发展历史并不长,首次引入云计算技术的是淘宝网,其所有交易都是基于自建系统完成的,而阿里云也成为我国首家开展云计算供应的公司。云计算对于大数据的超强处理能力使其对电子商务的发展起到了推波助澜的作用,主要影响表现在以下方面。
(一)信息检索能力
电子商务平台虽然很大程度上改变了消费者的购物方式,但是就营销方式来说,商品数量和种类依然是影响消费者选择商家的主要因素。在电子商务领域内,商品数量和种类呈现出结构的繁杂化发展甚至是非结构化发展趋势。这些都为 IT基础设施以及信息处理技术提出了挑战,大数据处理技术由于其具备的灵活性和功能强大的检索服务使其能够引领电子商务信息处理技术的新方向。
云计算的检索服务可以根据客户的实际需求和交易习惯对大量的信息进行筛选和显示,其智能性和高效性也是传统IT基础设施多不能比拟的。此外,云平台还具有信息推荐功能,根据网上交易整体情况筛选热点商品予以展示,提高了交易的针对性和检索效率。云计算性能的优势还体现在对人类部分思维进行描述的功能上,解决了长期以来计算机信息处理不能够准确把握人类语言和知识应用的难题,使数据的处理实现了功能的深度发掘。这种技术优势表现在实际交易中就是电商平台能够对用户输入的语言进行迅速的反映,并能准确地提供用户所需耍的商品信息。这种处理过程极大地提高了信息服务的效率和质量,使用户满意度得到了很大的提升。
(二)弹性处理能力
电子商务信息处理系统的工作性质使其必须具有强大的弹性处理能力,并能够在极短的时间内做出反映以应对在系统运行中出现的各种问题。这些问题的出现并不是偶然的,而是随着用户的并发访问以及商家集体营销活动造成的大量订单信息所导致的,这些情况在当前的电商系统运行中是比较常见的,这就需要系统在面临突然增长的业务量时具有强大的扩容能力和数据的存储能力。
云计算技术的出现在理论上实现了信息的无上限存储能力以及超大规模信息处理能力,使其能够轻松地应对TB数量级的信息乃至PB数量级的信息处理。而这一功能的实施并不需要企业对硬件系统进行更换,而且能够以比较低的成本享用云计算存储处理信息服务,在此基础上对应用系统机型全方位的布局并保证了弹性处理能力的实现,使资源达到了最优化配置。
(三)信息处理安全性能
网络系统面临的最大难题是信息安全问题,保证交易安全和用户信息安全更是电商企业应时刻关注的话题。信息时代的一大特征是将信息转化为可利用的资源,甚至是直接创造经济价值的信息资本。电子商务领域内,大数据就是企业生存发展的重要资本,对于大数据的掌控能力将成为衡量企业核心竞争力的主要标志。但是大数据的出现同样给信息资源的安全带来了极大的挑战,由于其结构复杂,数量巨多,并且大多是具有敏感性的信息,很容易成为网络攻击的目标。
大数据处理技术在应对信息安全是进行了性能的全面评估,使其能够及时、精确地定位各类网络攻击或非正常现象,并将这些异常数据收集整理通过分析实施预防措施。云计算技术的安全性还体现在将安全可靠的信息转化为云服务,并将这些信息托管在云端,为用户的信息提供了专业化的信息防护措施和保密方案。
四、大数据处理的发展趋势
信息技术的发展历史并不长远,但是在每个发展阶段都会出现具有标志性的技术类型和产品。在目前,信息技术的热点以及将会对信息产业产生重大影响的无疑是云计算技术和大数据处理f司题。在电子商务环境中大数据处理将会发展出更多强大和多元的功能,具体发展趋势有以下几点。
(一)大数据处理服务和产品的多样化
目前电子商务平台的服务和产品正在向着多元化的方向发展,除了电商企业之外,政府机构、大型集团企业、行政事业单位等都加入或正在加入构建云环境下的数据处理服务平台,并且可以实现对没有充足IT能力的小型电子商务企业进行服务和产品的输出。
(二)新型的电子商务运营模式
云计算的出现不仅对IT技术设施进行了大规模和深度的革新,同时其带来的众多产品如长尾效应、经济效应、众包、个性化服务等对于经济学概念的再认知也产生了重大的影响。这些变革有助于盈利性企业的经营模式做出重大的调整,进而加快了向服务经济社会发展的步伐。随着信息技术的进一步发展和现有技术的逐步完善,传统经济模式必将会受到严重的冲击,商业模式也会随之产生整体性的变动甚至是根本性的改变,并且在变化中不断进行新技术、新方法和新思路的探索。
(三)IT设施将成为企业核心竞争力的重要组成部分
企业的核心竞争力包含多方面的内容,但可以确定的是都是对企业发展具有重大影响的因素。随着现代信息化时代的发展和信息技术在各个领域内的广泛使用,企业成产、管理、经营等模块的信息化将会对企业能否适应社会的发展以及在日益激烈的市场中保持其竞争力产生举足轻重的作用。通过对IT基础设施进行引进和革新,能在最大限度内实现资源的最佳配置,提高生产质量和效率,降低企业运营成本,提升企业的整体管理水平。特别是对于信息技术依赖程度高的电子商务企业,云计算构架和大数据处理技术的可扩展性相当可观,为海量信息的存储、整合和管理提供了安全可靠的环境,通过IT基础设施的技术优势,为突破电子商务行业的发展上限提供了可能。