数据库与云计算
A. 什么叫大数据,与云计算有何关系。
1,大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产
2,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。
(1)数据库与云计算扩展阅读:
大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。
大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。
大数据的趋势:
趋势一:数据的资源化
何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。
趋势二:与云计算的深度结合
大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
趋势三:科学理论的突破
随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
参考资料:网络-大数据网络-云数据
B. 大数据与云计算有什么区别
概念的不抄同
从宏观的概袭念上来讲,云计算改变了IT,而大数据则改变了业务。同时,大数据必须有云作为它的基础架构,才能得以顺畅推广并体现出强大的实用价值。
目标受众的区别
双方的目标受众也是不一样的,云计算代表着一种IT层面的解决方案,是面向CIO的;而大数据则是一种战略构架,是面向管理者和业务层的,它能让我们在业务上展示出更强大的竞争力,完全提升综合实力
C. 数据库好还是云计算好
目前云计算是新新事物,新新事物风险和机遇并存。云计算最有价值的理念之一是资源整合,物尽其用,之二是即服务的盈利模式.
云计算是整合资源以即方式提供服务,它主要在三个层面体现技术和服务。
一是硬件基础设施层面,让硬件资源以即方式提供服务;
(客户要硬件环境资源,登录资源池自己定制、然后交钱、最后获取资源,用多少付多少钱; 付费对象是:应用开发者,企业IT管理者,应用平台供应商等。);
二是应用平台层面,让应用平台以即方式提供服务;
(供应商提高软件平台,平台可以开发、部署、管理、监控应用,提供开放的类APP商店; 付费对象是:应用开发者。)
三是应用层面,让应用以即方式提供服务;
(应用开放商,把应用部署在应用平台,用户可以去使用这些应用,按即方式享受服务和付费;付费对象是:终端消费者。)
即方式服务:
像水电一样,从你开始使用到你结束使用进行度量,你登录应用入口就可以直接使用应用,甚至不用在你本地安装应用,就像打开水龙头就可以用水一样,然后付费,它本质是一种推的服务、盈利模式。所以,云计算要学习就多方多面。
不过,他们的根本基础还是计算机科学与技术,包括网络、硬件、软件等,只是硬件或平台会比较侧重虚拟机、网格计算、分布式计算等方面的技术,而应用会比较在意用户体验、大众互联方面,应用主要技术还是软件开放技术,特别可能会热于android或ios或wm的WIFI移动应用的开发。
下一波的IT浪潮就是云计算、物联网、人工智能、生物技术。目前云计算是新新事物,教学资源紧张是正常的,新新事物风险和机遇并存。请相信机遇的东西确实是过了这个村,没了这个店,云计算目前就像初期的计算机专业一样,等它成熟了,等你看到它的发展了,那时候你就落后,只能在前人后面捡烟头。好好把握学习这个专业的机会,目前云计算处于发展初期,机会还是很大的:http://e.51cto.com/course/course_id-2334.html相信选择这个新新行业有风险,但机会总是给第一个敢吃螃蟹的人。
D. 大数据和云计算是什么
大数据和云计算的区别:
1)目的不同:大数据是为了发掘信息价值,而云计算主要是通过互联网管理资源,提供相应的服务。
2)对象不同:大数据的对象是数据,云计算的对象是互联网资源以及应用等。
3)背景不同:大数据的出现在于用户和社会各行各业所产生大的数据呈现几何倍数的增长;云计算的出现在于用户服务需求的增长,以及企业处理业务的能力的提高。
4)价值不同:大数据的价值在于发掘数据的有效信息,云计算则可以大量节约使用成本。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极操作PB级别的数据”,确实让人兴奋不能止。
大数据分析经常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十数百或甚至数千的服务器分配工作,大数据需要特殊的技术,以有效地处理大量数据。适用大数据的技术,包括大规模并行处理数据库、数据挖掘电网、分布文件系统、分布式数据库、计算平台、互联网和可扩展的存储系统,大数据指的海量的数据一般日处理PB级别以上,一般用于挖掘,分析,做一些智能性商业板块。
大数据必然与云计算有相关(大数据和云计算没有必然的联系,你要作大数据,可以用云计算,也可不用)数据中心是云计算基础,从技术上来看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分,大数据必然无法用单台的计算机进行处理,必须采用分布式的架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算分布式处理、分布式数据库和云存储、虚拟化等技术,随着云时代的来临,大数据也吸引了越来越多的关注。
E. 云计算方向和数据库方向哪种好,或者两种技术是不是有共通的地方哪个前景更好一些
1、云计算属于综合类,适合于喜欢归纳、整合的人去学习、研究和发展;回
2、数据库属于细分类,答适合于喜欢沿着一个方向、心无旁骛、深钻细究的人去学习、研究和发展;
3、数据库是云计算发展基础之一,云计算是数据库应用案例之一;
4、数据库是IT基础之一、云计算是IT当下最红的新秀,因此,从短期来看,相较而言,云计算更热、更有前途;从长期来看,数据库可以更长久地存在下去,而云计算说不定哪一天又会被其它新秀所取代。
综上,如果个人喜好不同、长短期追求不同,那么就会有不同的选择答案。
F. 大数据和云计算的区别
大数据领域的人才需求主要围绕大数据的产业链展开,涉及到数据的采集、内整理、存储、安全、容分析、呈现和应用,岗位多集中在大数据平台研发、大数据应用开发、大数据分析和大数据运维等几个岗位。
大数据本身除了要有数据、采集、汇聚一定量的数据之外,更重要的是数据的处理、挖掘、分析、可视化、应用这样一整套的过程。
云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。
二者关系:
大数据常和云计算联系到一起,因为实时的大型数据集分析需要分布式处理框架来向数十、数百或甚至数万的电脑分配工作。大数据和云计算各有不同的关注点,但是在技术体系结构上,都是以分布式存储和分布式计算为基础,所以二者之间的联系也比较紧密。
可以说,云计算充当了工业革命时期的发动机的角色,而大数据则是电。
G. 数据仓库,大数据和云计算有什么区别和联系
您好,上海蓝盟为您解答。
首先简单的看一下云计算与大数据的概念.
1)云计算:云计算本质上是一种计算资源集中分布和充分共享的效用计算模式,其中集中是为了计算资源的集约化管理,分布是便于扩展计算能力.集中分布式是针对云服务提供商的,充分共享是针对用户,在云计算中,虽然对于每个云用户来说都拥有一台超级计算机,但本质上,这些用户是充分共享了云服务商所提供的计算服务.而效用计算更多的是一种商业模式,就是用户按所需服务来付费.
2)在前面的博文中,对大数据有个讨论,简单的说,大数据的特点就是数据量大(虽然很多人都把大数据定义在T级别以上,其实我觉得这是有问题的,大数据的大其实应该是个相对概念,是相对于当前的存储技术和计算能力的),数据应用需求大,计算量大.数据量大是最基本的,需求大其实包含了需求的数量、多样性和实时性.计算量大是因为数据量大和需求量大和算法复杂(检索,推荐,模式识别)所致.大数据的这种特点使得我们很难找到通用的处理模式来解决大数据所面临的问题,我们只能针对不同的需求采用不同的处理方法,这也是大数据处理比较困难的症结所在。无论是传统的数据库还是最近兴起的NoSQL数据库,在大数据存储和处理方面其实都是有非常大的局限性的,所以分布式计算才在大数据处理中大兴其道。Hadoop虽然提供了比较完整的一套处理模式,但相对于大数据所面临的应用需求的多样性而言,能处理的问题域也是十分有限的。
数据库和数据仓库的概念,大家google一下就可以了,接下来,我们看看它们之间的关系:
1)数据库和数据仓库都是数据的一种存储方式,大数据处理更多的是一种需求(问题),而云计算是一种比较综合的需求(问题)解决方案。
2)由于云计算本身的特性,天生就面临大数据处理(存储、计算等)问题,因为云计算的基本架构模式是C/S模式,其中S相对集中,而C是广泛分布。所有用户的数据和绝大部分的计算都是在S端完成的(数据量大,计算量大),加上用户也天然具有多样性(地域,文化,需求,个性化等),因此需求(也包括计算量)就非常大。
3)云计算当然会涉及到数据的存储技术,但数据库技术对于云计算来说要视具体的情况来分析:
A)对于IaaS而言,数据库技术不是必需的,也不是必备的功能;
B)对于PaaS来说,数据库功能应该是必备的功能
C)对于SaaS而言,必然会用到数据库技术(包括传统关系数据库和NoSQL数据库)。
而对于数据仓库技术,并不是云计算所必需的,但由于云数据的信息价值极大,类似一座金矿,我想云服务商是不可能放过从这些金矿中提取金子的.
4)大数据首先所面临的问题就是大数据的存储问题,一般都会综合运用各种存储技术(文件存储,数据库存储),当然,你完全用文件存储或者数据库存储来解决,也是没问题的。与云计算类似,数据仓库技术不是必需的,但对于数据仓库技术对于结构化数据进行淘金还是非常有用的,当然,你不用数据仓库技术也可以,比如Hadoop模式。
在云计算和大数据处理中,最基础的技术其实是分布式计算技术。而对于构建分布式计算而言,多线程,同步,远程调用(RPC,RMI等),进程管理与通信是其基本技术点。分布式计算编程是一种综合性应用编程,不仅需要有基本的技术点,还需要一定的组织管理知识。
就目前来说,云计算和大数据处理其实都没有形成一个统一的标准和定义。希望我的回复对您有所帮助。
H. 大数据和云计算的区别
云计算和大数据的区别是什么?关于大数据和云计算的关系人们通常会有误解。而且也会把它们混起来说,分别做一句话直白解释就是:云计算就是硬件资源的虚拟化;大数据就是海量数据的高效处理。
大数据技术是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。
云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化之后再进行分配使用,在云计算领域目前的老大应该算是Amazon,可以说为云计算提供了商业化的标准,另外值得关注的还有VMware(其实从这一点可以帮助你理解云计算和虚拟化的关系),开源的云平台较有活力的就是Openstack了。
大数据相当于海量数据的“数据库”,而且通观大数据领域的发展也能看出,当前的大数据处理一直在向着近似于传统数据库体验的方向发展,Hadoop的产生使我们能够用普通机器建立稳定的处理TB级数据的集群,把传统而昂贵的并行计算等概念一下就拉到了我们的面前,但是其不适合数据分析人员使用(因为MapRece开发复杂),所以PigLatin和Hive出现了(分别是Yahoo!和facebook发起的项目,说到这补充一下,在大数据领域Google、facebook、twitter等前沿的互联网公司作出了很积极和强大的贡献),为我们带来了类SQL的操作,到这里操作方式像SQL了,但是处理效率很慢,绝对和传统的数据库的处理效率有天壤之别,所以人们又在想怎样在大数据处理上不只是操作方式类SQL,而处理速度也能“类SQL”,Google为我们带来了Dremel/PowerDrill等技术,Cloudera(Hadoop商业化较强的公司,Hadoop之父cutting就在这里负责技术领导)的Impala也出现了。