曲洲數學報
『壹』 小學生數學小報
+、-、×、÷和 = 這五個符號,大家對它們都是再熟悉不過的了,但是你知道它們的來歷嗎版?
遠古時期權,古希臘人和印度人都是把兩個數字寫在一起表示加法,把兩個數字寫得分開一些來表示減法。中世紀後期,歐洲商業逐漸發達。一些商人常在裝貨的箱子上畫一個「+」,表示重量超過一些;畫一個「-」,表示重量略微不足。文藝復興時期,義大利的藝術大師達·芬奇在他的一些作品中也採用過「+」和「-」的記號。公元1489年,德國人威德曼在他的著作中正式用這兩個符號來表示加減運算。後來經過法國數學家韋達的大力宣傳和提倡,這兩個符號才開始普及,到1603年終於獲得大家的公認。
『貳』 數學小報欄目大全
16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上。 瑞士數學家雅谷·伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關
語 運 算 符 號
+、-、×、÷、= 符號如何來的?
+、-、×、÷和 = 這五個符號,大家對它們都是再熟悉不過的了,但是你知道它們的來歷嗎?遠古時期,古希臘人和印度人都是把兩個數字寫在一起表示加法,把兩個數字寫得分開一些來表示減法。中世紀後期,歐洲商業逐漸發達。一些商人常在裝貨的箱子上畫一個「+」,表示重量超過一些;畫一個「-」,表示重量略微不足。文藝復興時期,義大利的藝術大師達·芬奇在他的一些作品中也採用過「+」和「-」的記號。公元1489年,德國人威德曼在他的著作中正式用這兩個符號來表示加減運算。後來經過法國數學家韋達的大力宣傳和提倡,這兩個符號才開始普及,到1603年終於獲得大家的公認。×、÷符號的使用,不過300多年。據說,英國人威廉·奧特來德1631年首先在他的著作中用「×」表示乘法,後人沿用至今。
中世紀時,阿拉伯數學相當發達,大數學家阿爾·花拉子米曾用「3/4」來表示3被4除。許多人認為,現在通用的分數記號,即來源於此。直到1630年,在英國人約翰·比爾的著作中才出現了「÷」號,據推測他是根據阿拉伯人的除號「—」與比的記號「:」合並轉化而成的。現在絕大多數國家的出版物中,都用+、-來表示加與減。×、÷卻沒有普遍使用,一些國家的課本中用「.」代替「×」,而在俄國和德國的出版物中一般用「:」來代替「÷」。那麼=這個符號又是怎麼產生的呢?巴比倫和埃及曾用過各種記號來表示相等,而最早使用近代的 = 符號卻是在中世紀時,在雷科德的名著《智慧的磨刀石》中。他說之所以選擇兩條等長的平行線作為等號,是因為它們再相等不過了。但是 = 號直到18世紀才普及。
最 少 要 幾 分 鍾
華羅庚爺爺是世界著名的中國數學家,他出生在一個貧民家庭,他非常熱愛學習,總是爭分奪秒地學習,在碰到問題的時候,總是靠自己動腦筋解決。
1965年,華羅庚爺爺在他的一本書中出了一道題目。華爺爺出這道題的目的,是想訓練小朋友做幾件事時,合理安排時間的本領。題目是這樣的:洗水壺需要1分鍾,燒開水需要15分鍾,洗茶杯需要1分鍾,拿茶葉需要2分鍾,問最少要幾分鍾可以泡好茶?同學們,怎樣合理安排這幾件事,才能使所用的時間最省呢?那就要能在同一時間內做幾件事,先洗水壺,接著燒開水,燒上水以後,需要等15分鍾水才能開。在15分鍾內,可以洗茶杯,拿茶葉,水開了就泡茶,這樣,只用16分鍾就行了。同學們,當你要做幾件事時,能不能用華爺爺教給我們的方法來安排呢?想一想:
『叄』 數學小報
1.失明的數學家歐拉
歐拉的驚人成就並不是偶然的。他可以在任何不良的環境中工作,經常抱著孩子在膝上完成論文,也不顧較大的孩子在旁邊喧嘩。歐拉在28歲時,不幸一支眼睛失明,過了30年以後,他的另一隻眼睛也失明了。在他雙目失明以後,也沒有停止過數學研究。他以驚人的毅力和堅韌不拔的精神繼續工作著,在他雙目失明至逝世的十七年間,還口述著作了幾本書和400篇左右的論文。由於歐拉的著作甚多,出版歐拉全集是十分困難的事情,1909年瑞士自然科學會就開始整理出版,直到現在還沒有出完,計劃是72卷。
歐拉在他的886種著作中,屬於他生前發表的有530本書和論文,其中不少是教科書。他的著作文筆流暢、淺顯、通俗易懂,讀後引人入勝十分令讀者敬佩。尤其值得一提的是他編寫的平面三角課本,採用的記號如sinx,cosx,……等等直到現今還在用。
歐拉1720年秋天入巴塞爾大學,由於異常勤奮和聰慧,受到約翰·伯努利的嘗識,給以特別的指導。歐拉同約翰的兩個兒子尼古拉·伯努力和丹尼爾·伯努利也結成了親密的朋友。
歐拉19歲寫了一篇關於船桅的論文,獲得巴黎科學院的獎金,從此開始了創作生涯。以後陸續得獎多次。1725年丹尼爾兄弟赴俄國,向沙皇喀德林一世推薦歐拉,於是歐拉於1727年5月17日到了彼得堡,1733年丹尼爾回巴塞爾,歐拉接替他任彼得堡科學院數學教授,時年僅26歲。
1735年,歐拉解決一個天文學的難題(計算慧星軌道)。
這個問題幾個著名數學家,幾個月的努力才得以解決,歐拉卻以自已發明的方法,三日而成。但過度的工作使他得了眼病,不幸右眼失明,這時才28歲。
2.數學家的故事——蘇步青
蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。
那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。
楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。
17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」
這就是老一輩數學家那顆愛國的赤子之心
3.數學家的墓誌銘
一些數學家生前獻身於數學,死後在他們的墓碑上,刻著代表著他們生平業績的標志。
古希臘學者阿基米德死於進攻西西里島的羅馬敵兵之手(死前他還在主:「不要弄壞我的圓」。)後,人們為紀念他便在其墓碑上刻上球內切於圓柱的圖形,以紀念他發現球的體積和表面積均為其外切圓柱體積和表面積的三分之二。 德國數學家高斯在他研究發現了正十七邊形的尺規作法後,便放棄原來立志學文的打算 而獻身於數學,以至在數學上作出許多重大貢獻。甚至他在遺囑中曾建議為他建造正十七邊形的稜柱為底座的墓碑。
16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上。 瑞士數學家雅谷·伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語
4.祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理, 但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".
5.數學奇才——伽羅華
1832年5月30日晨,在巴黎的葛拉塞爾湖附近躺著一個昏迷的年輕人,過路的農民從槍傷判斷他是決斗後受了重傷,就把這個不知名的青年抬到醫院。第二天早晨十點鍾,他就離開了人世。數學史上最年輕、最有創造性的頭腦停止了思考。人們說,他的死使數學發展推遲了好幾十年。這個青年就是死時不滿21歲的伽羅華。
伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。
1828年,17歲的伽羅華開始研究方程論,創造了「置換群」的概念和方法,解決了幾百年來使人頭痛的方程來解決問題。伽羅華最重要的成就,是提出了「群」的概念,用群論改變了整個數學的面貌。1829年5月,伽羅華把他的成果寫成論文,遞交法國科學院,但伴隨著這篇傑作而來的是一連串的打擊和不幸。先是父親因不堪忍受教士誹謗而自殺,接著因他的答辯既簡捷又深奧令考官們不滿而未能進入著名的巴黎綜合技術學校。至於他的論文,先是被認為新概念太多又過於簡略而要求重寫;第二份推導詳盡的稿子又因審稿人病逝而下落不明;1831年1月提交的第三份論文又因評閱人不能全部看懂而被否定。
稱量皇冠的難題
6.王冠的重量
在一般人看來,阿基米德是個「怪人」。用羅馬歷史學家普魯塔克的話說:「他象是一個中了邪術的人,對於飯食和自己的身體全不關心。」有時候,飯擺在桌子上叫他吃飯,他好象沒聽見,仍舊在火盆的灰里畫他的幾何圖形。他的妻子,要時時看守他。譬如他用油擦身的時候,便呆坐著用油在自己身上畫圖案,而忘記原來是作什麼事的了。他的妻子更怕送他到浴堂里去洗澡,這個笑話是因為國王的一個新冠冕而引起的。
國王在前不久,叫一個工匠替他打造一頂金皇冠。國王給了工匠他所需要的數量的黃金。工匠的手藝非常高明,製做的皇冠精巧別致,而且重量跟當初國王所給的黃金一樣重。可是,有人向國王報告說:「工匠製造皇冠時,私下吞沒了一部分黃金,把同樣重的銀子摻了進去。」國王聽後,也懷疑起來,就把阿基米德找來,要他想法測定,金皇冠里摻沒摻銀子,工匠是否私吞黃金了。這次,可把阿基米德難住了。他回到家裡苦思苦想了好久,也沒有想出辦法,每天飯吃不下,覺睡不好,也不洗澡,象著了魔一樣。
有一天,國王派人來催他進宮匯報。他妻子看他太臟了,就逼他去洗澡。他在澡堂洗澡的時候,腦子里還想著稱量皇冠的難題。突然,他注意到,當他的身體在浴盆里沉下去的時候,就有一部分水從浴盆邊溢出來。同時,他覺得入水愈深,則他的體量愈輕。於是,他立刻跳出浴盆,忘了穿衣服,就跑到人群的街上去了。一邊跑,一邊叫:「我想出來了,我想出來了,解決皇冠的辦法找到啦!」
他進皇宮後,對國王說:「請允許我先做一個實驗,才能把結果報告給你。」國王同意了。阿基米德將與皇冠一樣重的金子、一塊銀子和皇冠,分別一一放在水盆里,看金塊排出的水量比銀塊排出的水量少,而皇冠排出的水量比金塊排出的水量多。
阿基米德對國王說:「皇冠摻了銀子!」國王看了實驗,沒有弄明白,讓阿基米德給解釋一下。阿基米德說:「一公斤的木頭和一公斤的鐵比較,木頭的體積大。如果分別把它們放入水中,體積大的木頭排出的水量,比體積小的鐵排出的水量多。我把這個道理用在金子、銀子和皇冠上。因為金子的密度大,而銀子的密度小,因此同樣重的金子和銀子,必然是銀子的體積大於金子的體積。所 以同樣重的金塊和銀塊放入水中,那麼金塊排出的水量就比銀塊的水量少。剛才的實驗表明,皇冠排出的水量比金塊多,說明皇冠的密度比金塊的密度小,這就證明皇冠不是用純金製造的。」阿基米德有條理的講述,使國王信服了。實驗結果證明,那個工匠私吞了黃金。
很多滴瀝~ ~ ~ ~我找了六個,希望你認真看看~ ~ ~ 1。從一加到一百
高斯有許多有趣的故事,故事的第一手資料常來自高斯本人,因為他在晚年時總喜歡談他小時後的事,我們也許會懷疑故事的真實性,但許多人都證實了他所談的故事。
高斯的父親作泥瓦廠的工頭,每星期六他總是要發薪水給工人。在高斯三歲夏天時,有一次當他正要發薪水的時候,小高斯站了起來說:「爸爸,你弄錯了。」然後他說了另外一個數目。原來三歲的小高斯趴在地板上,一直暗地裡跟著他爸爸計算該給誰多少工錢。重算的結果證明小高斯是對的,這把站在那裡的大人都嚇的目瞪口呆。
高斯常常帶笑說,他在學講話之前就已經學會計算了,還常說他問了大人字母如何發音後,就自己學著讀起書來。
七歲時高斯進了 St. Catherine小學。大約在十歲時,老師在算數課上出了一道難題:「把 1到 100的整數寫下來,然後把它們加起來!」每當有考試時他們有如下的習慣:第一個做完的就把石板〔當時通行,寫字用〕面朝下地放在老師的桌子上,第二個做完的就把石板擺在第一張石板上,就這樣一個一個落起來。這個難題當然難不倒學過算數級數的人,但這些孩子才剛開始學算數呢!老師心想他可以休息一下了。但他錯了,因為還不到幾秒鍾,高斯已經把石板放在講桌上了,同時說道:「答案在這兒!」其他的學生把數字一個個加起來,額頭都出了汗水,但高斯卻靜靜坐著,對老師投來的,輕蔑的、懷疑的眼光毫不在意。考完後,老師一張張地檢查著石板。大部分都做錯了,學生就吃了一頓鞭打。最後,高斯的石板被翻了過來,只見上面只有一個數字:5050(用不著說,這是正確的答案。)老師吃了一驚,高斯就解釋他如何找到答案:1+100=101,2+99=101,3+98= 101,……,49+52=101,50+51=101,一共有50對和為 101的數目,所以答案是 50×101=5050。由此可見高斯找到了算術級數的對稱性,然後就像求得一般算術級數合的過程一樣,把數目一對對地湊在一起。
2。波蘭偉大的數學家伯格曼(Stefan Bergman,1898-1977年)離開波蘭後,先後在美國布朗大學、哈佛大學和斯坦福大學工作。他不大講課,生活支出主要靠各種課題費維持。由於很少講課,他的外語得不到鍛煉,無論口語還是書面語都很晦澀。但伯格曼本人從不這樣認為。他說:「我會講12種語言,英語最棒。」事實上他有點口吃,無論講什麼話別人都很難聽懂。有一次他與波蘭的另一位分析大師用母語談話,不一會對方提醒他:「還是說英語吧,也許更好些。」
1950年國際數學大會期間,義大利一位數學家西切拉(Sichera)偶然提起伯格曼的一篇論文可能要加上「可微性假設」,伯格曼非常有把握地說:「不,沒必要,你沒看懂我的論文。」說著拉著對方在黑板上比劃起來,同事們耐心地等著。過了一會西切拉覺得還是需要可微性假設。伯格曼反而更加堅定起來,一定要認真解釋一下。同事們插話:「好了,別去想它,我們要進午餐了。」伯格曼大聲嚷了起來:「不可微—不吃飯。」(No differentiability, no lunch)最終西切拉留下來聽他一步一步論證完。
有證據表明伯格曼總在考慮數學問題。有一次清晨兩點鍾,他撥通了一個學生家裡的電話號碼:「你在圖書館嗎?我想請你幫我查點東西!」
還有一次伯格曼去西海岸參加一個學術會議,他的一個研究生正好要到那裡旅行結婚,他們恰好乘同一輛長途汽車。這位學生知道他的毛病,事先商量好,在車上不談數學問題。伯格曼滿口答應。伯格曼坐在最後一排,這對要去度蜜月的年輕夫婦恰巧坐在他前一排靠窗的位置。10分鍾過後,伯格曼腦子里突然有了靈感,不自覺地湊上前去,斜靠著學生的座位,開始討論起數學。再過一會,那位新娘不得不挪到後排座位,伯格曼則緊挨著他的學生坐下來。一路上他們興高采烈地談論著數學。幸好,這對夫婦婚姻美滿,有一個兒子,還成了著名數學家。
3。哥德爾(Kurt Godel,1906-1978年)的舉止以「新穎」和「古怪」著稱,愛因斯坦是他要好的朋友,他們當時都在普林斯頓。他們經常在一起吃飯,聊著非數學話題,常常是政治方面的。麥克阿瑟將軍從朝鮮戰場回來後,在麥迪遜大街舉行隆重的慶祝遊行。第二天哥德爾吃飯時煞有介事地對愛因斯坦說,《紐約時報》封面上的人物不是麥克阿瑟,而是一個騙子。證據是什麼呢?哥德爾拿出麥克阿瑟以前的一張照片,又拿了一把尺子。他比較了兩張照片中鼻子長度在臉上所佔的比例。結果的確不同:證畢。
哥德爾一生花了很大精力想搞清楚連續統假設(CH)是否獨立於選擇公理(AC)。在60年代早期,一個初出茅廬的年輕數學家柯恩(Paul J.Cohen),與斯坦福大學的同事們聊天時揚言:他也許可以通過解決某個希爾伯特(Hilbert)問題或者證明CH獨立於AC而一舉成名。實話說,柯恩當時只是傅里葉分析方面的行家,對於邏輯和遞歸函數,他只擺弄過不長時間。柯恩果然去專攻邏輯了,大約用了一年的時間,真的證明了CH與AC獨立。這項成果被認為是20世紀最偉大的智力成就之一,他因此獲得菲爾茲獎(Fieids Medal,比自然科學界的諾貝爾獎還難獲得)。柯恩的技術是「力迫」(forcing)法,現已成為現代邏輯的一種重要工具。
當初的情形是:柯恩拿著證明手稿去高等研究院找哥德爾,請他核查證明是否有漏洞。
哥德爾起初自然很懷疑,因為柯恩早已不是第一個向他聲明解決了這一難題的人了。在哥德爾眼裡,柯恩根本就不是邏輯學家。柯恩找到哥德爾家,敲了門。門只開了6英寸的一道縫,一支冷冰冰的手伸出來接過手稿,隨後門「砰」地關上了。柯恩很尷尬,悻悻而去。不過,兩大後,哥德爾特別邀請柯恩來家裡喝茶。柯恩的證明是對的:大師已經認可了。
4。維納(1894-1964年)是最早為美洲數學贏得國際榮譽的大數學家,關於他的軼事多極了。維納早期在英國,有一次遇見英國著名數學家李特爾伍德(Littlewood)時說:「噢,還真有你這么個人。我原以為Littlewood只是哈代(Hardy)為寫得比較差的文章署的筆名呢。」維納本人對這個笑話很懊惱,在自傳中極力否認此事。此故事的另一種版本說的是朗道(Edmund Laudau):朗道很懷疑李特爾伍德的存在性,為此專程去英國親自看了這個人。
維納後來赴美國麻省理工學院任職,長達25年。他是校園中大名鼎鼎的人物,人人都想與他套點近乎。有一次一個學生問維納怎樣求解一個具體問題,維納思考片刻就寫出了答案。實際上這位學生並不想知道答案,只是問他「方法」。維納說:「可是,就沒有別的方法了嗎?」思考片刻,他微笑著隨即寫出了另一種解法。維納最有名的故事是有關搬家的事。一次維納喬遷,妻子熟悉維納的方方面面,搬家前一天晚上再三提醒他。她還找了一張便條,上面寫著新居的地址,並用新居的房門鑰匙換下舊房的鑰匙。第二天維納帶著紙條和鑰匙上班去了。白天恰有一人問他一個數學問題,維納把答案寫在那張紙條的背面遞給人家。晚上維納習慣性地回到舊居。他很吃驚,家裡沒人。從窗子望進去,傢具也不見了。掏出鑰匙開門,發現根本對不上齒。於是使勁拍了幾下門,隨後在院子里踱步。突然發現街上跑來一小女孩。維納對她講:「小姑娘,我真不走運。我找不到家了,我的鑰匙插不進去。」小女孩說道:「爸爸,沒錯。媽媽讓我來找你。」
有一次維納的一個學生看見維納正在郵局寄東西,很想自我介紹一番。在麻省理工學院真正能與維納直接說上幾句話、握握手,還是十分難得的。但這位學生不知道怎樣接近他為好。這時,只見維納來來回回踱著步,陷於沉思之中。這位學生更擔心了,生怕打斷了先生的思維,而損失了某個深刻的數學思想。但最終還是鼓足勇氣,靠近這個偉人:「早上好,維納教授!」維納猛地一抬頭,拍了一下前額,說道:「對,維納!」原來維納正欲往郵簽上寫寄件人姓名,但忘記了自己的……。
5。蘋果樹下的例行出步
希爾伯特在海德爾堡上了一學期以後,接下來的一個學期,本來可以允許他再轉到柏林去聽課,但他深深地依戀自己的家鄉,於是他又回到了哥尼斯堡大學.再下一個學期——1882年春天,希爾伯特仍決定留在哥尼斯堡.
這時赫爾曼·閱可夫斯基從柏林學習了三個學期後也回到了哥尼斯堡大學.閩可夫斯基從小就數學才能出眾,據說有一次上數學課,老師因把問題理解錯了而「掛了黑板」,同學們異口同聲叫道:「閉可夫斯基去幫幫忙!」在柏林上學時,他因為出色的數學工作曾得到過一筆獎金.這時,年僅17歲的閱可夫斯基正沉浸在一項很深奧的研究之中——解巴黎科學院出榜征解的一個問題:把一個數表成五個平方數的和.一年後,1883年春天,18歲的閱可夫斯基和英國著名的數學家史密斯共享巴黎科學院的這項大獎.這件事轟動了整個哥尼斯堡.希爾伯特的父親因此曾告誡自己的兒子不要冒冒失失地去和「這樣知名的人」交朋友.但由於對數學的熱愛和共同的信念,希爾伯特和比他小兩歲的閩可夫斯基很快成了好朋友.
1884年春天,年輕的數學家阿道夫·赫維茨從哥廷根來到哥尼斯堡擔任副教授,年齡還不到25歲,在函數論方面已有出色的研究成果.希爾伯特和閩可夫斯基很快就和他們的新老師建立了密切的關系.他們這三個年輕人每天下午准5點必定相會去蘋果樹下散步.希爾伯特後來回憶道:「日復一日的散步中,我們全都埋頭討論當前數學的實際問題;相互交換我們對問題新近獲得的理解,交流彼此的想法和研究計劃.」在他們三人中,赫維茨有著廣泛「堅實的基礎知識,又經過很好的整理,」所以他是理所當然的帶頭人,並使其他兩位心悅誠服.當時希爾伯特發現,這種學習方法比鑽在昏暗的教室或圖書館里啃書本不知要好多少倍,這種例行的散步一直持續了整整八年半之久.以這種最悠然而有趣的學習方式,他們探索了數學的「每一個角落」,考察著數學世界的每一個王國,希爾伯特後來回憶道:「那時從沒有想到我們竟會把自己帶到那麼遠!」三個人就這樣「結成了終身的友誼.」
正如徐利治教授所指出的,良師益友間的互相切磋討論對希爾伯特的成長發展也起了十分重要的作用,可以想見那段時間是希爾伯特才、學、識獲得迅速成長的重要階段,假如沒有這段經歷,那麼希爾伯特在1900年竟能在許多重要領域中一次提出那麼多著名難題,倒是不易想像的了.有關希爾伯特散步的這個小故事告訴我們,師生除了在課堂上的活動以外,師生在課外的交流以及同學間的課外交流,也是一種重要的學習方式,對數學學習非常有益。而且,在散步中交流因為沒有書本,也不用紙和筆,因此沒有繁瑣的推導和計算,只能交談那些能用話「說出來」的東西,即對問題的理解,分析總是中的思想和方法,挖掘統帥形式推導的靈魂,......而這些對學好數學非常重要。同學們不妨經常邀幾位要好的同學一起散步交談,肯定會其樂無究的。
我幫你找的5個故事,你可以自己節選。 蠻好的==
『肆』 數學手抄報的資料
可以寫阿拉伯數字阿拉伯數字的由來
古代印度人創造了阿拉伯數字後,大約到了公專元7世紀的時候,這些數屬字傳到了阿拉伯地區。到13世紀時,義大利數學家斐波那契寫出了《算盤書》,在這本書里,他對阿拉伯數字做了詳細的介紹。後來,這些數字又從阿拉伯地區傳到了歐洲,歐洲人只知道這些數字是從阿拉伯地區傳入的,所以便把這些數字叫做阿拉伯數字。以後,這些數字又從歐洲傳到世界各國。
阿拉伯數字傳入我國,大約是13到14世紀。由於我國古代有一種數字叫「籌碼」,寫起來比較方便,所以阿拉伯數字當時在我國沒有得到及時的推廣運用。本世紀初,隨著我國對外國數學成就的吸收和引進,阿拉伯數字在我國才開始慢慢使用,阿拉伯數字在我國推廣使用才有100多年的歷史。阿拉伯數字現在已成為人們學習、生活和交往中最常用的數字了。
『伍』 小學生關於圓數學手抄報圖片
你可以上Google圖片搜索: http://images.google.cn/images?um=1&hl=zh-CN&newwindow=1&client=aff-worldbrowser&q=%E6%95%B0%E5%AD%A6%E5%B0%8F%E6%8A%A5&aq=f&oq=具體內容:圓形,是一個看來簡單,實際上是很奇妙的形狀。古代人最早是從太陽,從陰歷十五的月亮得到圓的概念的。一萬八千年前的山頂洞人曾經在獸牙、礫石和石珠上鑽孔,那些孔有的就很圓.以後到了陶器時代,許多陶器都是圓的。圓的陶器是將泥土放在一個轉盤上製成的。當人們開始紡線,又制出了圓形的石紡錘或陶紡錘。古代人還發現圓的木頭滾著走比較省勁。後來他們在搬運重物的時候,就把幾段圓木墊在大樹、大石頭下面滾著走,這樣當然比扛著走省勁得多。大約在6000年前,美索不達米亞人,做出了世界上第一個輪子--圓的木盤。大約在4000多年前,人們將圓的木盤固定在木架下,這就成了最初的車子。會作圓,但不一定就懂得圓的性質。古代埃及人就認為:圓,是神賜給人的神聖圖形。一直到兩千多年前我國的墨子(約公元前468-前376年)才給圓下了一個定義:"一中同長也"。意思是說:圓有一個圓心,圓心到圓周的長都相等。這個定義比希臘數學家歐幾里得(約公元前330-前275年)給圓下定義要早100年。圓周率,也就是圓周與直徑的比值,是一個非常奇特的數。圓的面積公式 S=πr²《周髀算經》上說"周三徑一",把圓周率看成3,但是這只是一個近似值。美索不達來亞人在作第一個輪子的時候,也只知道圓周率是3。魏晉時期的劉徽於公元263年給《九章算術》作注。他發現"周三徑一"只是圓內接正六邊形周長和直徑的比值。他創立了割圓術,認為圓內接正多連形邊數無限增加時,周長就越逼近圓周長。他算到圓內接正3072邊形的圓周率,π= 3927/1250。劉徽已經把極限的概念運用於解決實際的數學問題之中,這在世界數學史上也是一項重大的成就。祖沖之(公元429-500年)在前人的計算基礎上繼續推算,求出圓周率在3.1415926與3.1415927之間,是世界上最早的七位小數精確值,他還用兩個分數值來表示圓周率:22/7稱為約率,355/113稱為密率。在歐洲,直到1000年後的十六世紀,德國人鄂圖(公元1573年)和安托尼茲才得到這個數值。現在有了電子計算機,圓周率已經算到了小數點後兩千萬位了。
『陸』 數學手抄報內容
百分數
【性質】
表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。百分數通常用「%」來表示。 百分數是特殊的分數,不能用分數表示。
表示一個數是另一個數的百分之幾的數.百分數也叫做百分率或百分比.百分數通常不寫成分數的形式,而採用符號「%」(叫做百分號)來表示.如 : 百分之四十一 寫作41% .由於百分數的分母都是100,也就是都以1%作單位,便於比較,因此,百分比在工農業生產、科學技術、各種實驗中有著十分廣泛的應用。
表示一個數占另一個數的幾分之幾的數,叫做百分數。百分數也叫做百分率或者百分比。百分數通常不寫成分數的形式,而是在分子後面加上百分號「%」來表示。生活中就有存在很多百分數:
每天在電視里的天氣預報節目中,都會報出當天晚上和明天白天的天氣狀況、降水概率等,提示大家提前做好准備,就像今天的夜晚的降水概率是20%,明天白天有五~六級大風,降水概率是10%,早晚應增加衣服。20%、10%讓人一目瞭然,即清楚又簡練。
隨著現在科技的飛速發展,現在每個中齡人都配備手機,款式多種多樣。倫敦大學皇家學院心理學家格倫.威爾森研究證明:老是低著頭看簡訊,會導致工作效率低下,工作人員的大腦反應能力也會減慢,經常看簡訊的人智商會下降10%,以百分數的形式再次證明了手機雖為人們提供了方便,但對人體健康卻十分有害。
【應用】
百分比雖以100為分母,但分子可以大於100,如200%即代表原本數字的2倍。舉例如一間公司去年純利100萬元,今年的純利為120萬元,則可以表示成「今年的純利比去年增加20%」,亦可寫成「今年的純利是去年的120%」,但這種寫法較少使用。
百分比有時可能造成誤會,不少人認為一個百分比的上升會被相同下降的百分比所取消,例如從100增加50%,等於100 + 50,即150。而從150下降50%則是150 - 75,等於75。最終結果是小於原本的數字100。
生活中的百分數
通常生活中有許多百分數,不過我在爸爸毛衣上看見了這個百分數,80%,而我又在媽媽的貿易找出了百分數,82.8%,真奇怪在毛衣上,就會有小數,而我又在我自己身上的毛衣找出了90%,生活中處處都有百分數.
1、空氣中約有80%的氮氣,氧氣約佔20%。
2、六(2)班體育鍛煉達標率為95%。
3、美國有79%的人希望停止戰爭。
4、上海假日消費佔全年50%,夜間消費佔全天50%
去年10月份,由於國慶假日的拉動,上海的社會零售總額達到48.87億元,打破了上海有史以來的月銷售紀錄。據統計,上海去年完成的1590億元社會消費品零售總額中,節假日消費佔到了一半。
同樣,由於工作和生活節奏的加快,在去年完成的1590億元的社會消費品零售總額中,晚上6點以後的夜間消費也佔到了總消費的50%。
5、我國國內生產總值中,第一產業占的比重由1992年的23.8%下降到1993年的21.2%。
6、今年比去年增產30%
『柒』 發一些圖片給我,關於數學手抄報的版面設計!謝謝!
阿拉伯數字
在生活中,我們經常會用到0、、2、3、4、5、6、7、8、9這些數字。那麼你知道這些數字是誰發明的嗎?
這些數字元號原來是古代印度人發明的,後來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發明的,就把它們叫做"阿拉伯數字",因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做阿拉伯數字。
現在,阿拉伯數字已成了全世界通用的數字元
九九歌
九九歌就是我們現在使用的乘法口訣。
遠在公元前的春秋戰國時代,九九歌就已經被人們廣泛使用。在當時的許多著作中,都有關於九九歌的記載。最初的九九歌是從"九九八十一"起到"二二如四"止,共36句。因為是從"九九八十一"開始,所以取名九九歌。大約在公元五至十世紀間,九九歌才擴充到"一一如一"。大約在公元十三、十四世紀,九九歌的順序才變成和現在所用的一樣,從"一一如一"起到"九九八十一"止。
現在我國使用的乘法口訣有兩種,一種是45句的,通常稱為"小九九";還有一種是81句的,通常稱為"大九九"。
數學符號的起源
數學除了記數以外,還需要一套數學符號來表示數和數、數和形的相互關系。數學符號的發明和使用比數字晚,但是數量多得多。現在常用的有200多個,初中數學書里就不下20多種。它們都有一段有趣的經歷。
例如加號曾經有好幾種,現在通用"+"號。
"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。
"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。
到了十五世紀,德國數學家魏德美正式確定:"+"用作加號,"-"用作減號。
乘號曾經用過十幾種,現在通用兩種。一個是"×",最早是英國數學家奧屈特1631年提出的;一個是"· ",最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:"×"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。可是這個符號現在應用到集合論中去了。
到了十八世紀,美國數學家歐德萊確定,把"×"作為乘號。他認為"×"是"+"斜起來寫,是另一種表示增加的符號。
"÷"最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將"÷"作為除號。
十六世紀法國數學家維葉特用"="表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號"="就從1540年開始使用起來。
1591年,法國數學家韋達在菱中大量使用這個符號,才逐漸為人們接受。十七世紀德國萊布尼茨廣泛使用了"="號,他還在幾何學中用"∽"表示相似,用"≌"表示全等。
大於號"〉"和小於號"〈",是1631年英國著名代數學家赫銳奧特創用。至於≯""≮"、"≠"這三個符號的出現,是很晚很晚的事了。大括弧"{ }"和中括弧"[ ]"是代數創始人之一魏治德創造的。
奇妙的圓形
圓形,是一個看來簡單,實際上是很奇妙的圓形。
古代人最早是從太陽,從陰歷十五的月亮得到圓的概念的。一萬八千年前的山頂洞人曾經在獸牙、礫石和石珠上鑽孔,那些孔有的就很圓。
以後到了陶器時代,許多陶器都是圓的。圓的陶器是將泥土放在一個轉盤上製成的。
當人們開始紡線,又制出了圓形的石紡綞或陶紡綞。
古代人還發現圓的木頭滾著走比較省勁。後來他們在搬運重物的時候,就把幾段圓木墊在大樹、大石頭下面滾著走,這樣當然比扛著走省勁得多。
大約在6000年前,美索不達米亞人,做出了世界上第一個輪子--圓的木盤。大約在4000多年前,人們將圓的木盤固定在木架下,這就成了最初的車子。
會作圓,但不一定就懂得圓的性質。古代埃及人就認為:圓,是神賜給人的神聖圖形。一直到兩千多年前我國的墨子(約公元前468-前376年)才給圓下了一個定義:"一中同長也"。意思是說:圓有一個圓心,圓心到圓周的長都相等。這個定義比希臘數學家歐幾里得(約公元前330-前275年)給圓下定義要早100年。
圓周率,也就是圓周與直徑的比值,是一個非常奇特的數。
《周髀算經》上說"徑一周三",把圓周率看成3,這只是一個近似值。美索不達來亞人在作第一個輪子的時候,也只知道圓周率是3。
魏晉時期的劉徽於公元263年給《九章算術》作注。他發現"徑一周三"只是圓內接正六邊形周長和直徑的比值。他創立了割圓術,認為圓內接正多連形邊數無限增加時,周長就越逼近圓周長。他算到圓內接正3072邊形的圓周率,π= 3927/1250。劉徽已經把極限的概念運用於解決實際的數學問題之中,這在世界數學史上也是一項重大的成就。
祖沖之(公元429-500年)在前人的計算基礎上繼續推算,求出圓周率在3.1415926與3.1415927之間,是世界上最早的七位小數精確值,他還用兩個分數值來表示圓周率:22/7稱為約率,355/113稱為密率。
在歐洲,直到1000年後的十六世紀,德國人鄂圖(公元1573年)和安托尼茲才得到這個數值。
現在有了電子計算機,圓周率已經算到了小數點後一千萬以上了。
從一加到一百
七歲時高斯進了 St. Catherine小學。大約在十歲時,老師在算數課上出了一道難題:"把 1到 100的整數寫下來,然後把它們加起來!"每當有考試時他們有如下的習慣:第一個做完的就把石板﹝當時通行,寫字用﹞面朝下地放在老師的桌子上,第二個做完的就把石板擺在第一張石板上,就這樣一個一個落起來。這個難題當然難不倒學過算數級數的人,但這些孩子才剛開始學算數呢!老師心想他可以休息一下了。但他錯了,因為還不到幾秒鍾,高斯已經把石板放在講桌上了,同時說道:「答案在這兒!」其他的學生把數字一個個加起來,額頭都出了汗水,但高斯卻靜靜坐著,對老師投來的,輕蔑的、懷疑的眼光毫不在意。考完後,老師一張張地檢查著石板。大部分都做錯了,學生就吃了一頓鞭打。最後,高斯的石板被翻了過來,只見上面只有一個數字:5050(用不著說,這是正確的答案。)老師吃了一驚,高斯就解釋他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50對和為 101的數目,所以答案是 50×101=5050。由此可見高斯找到了算術級數的對稱性,然後就像求得一般算術級數合的過程一樣,把數目一對對地湊在一起。
勾股定理
勾股定理:在任何一個直角三角形中,兩條直角邊的平方之和一定等於斜邊的平方。
這個定理在中國又稱為"商高定理",在外國稱為"畢達哥拉斯定理"。為什麼一個定理有這么多名稱呢?商高是公元前十一世紀的中國人。當時中國的朝代是西周,是奴隸社會時期。在中國古代大約是戰國時期西漢的數學著作《周髀算經》中記錄著商高同周公的一段對話。商高說:"…故折矩,勾廣三,股修四,經隅五。"什麼是"勾、股"呢?在中國古代,人們把彎曲成直角的手臂的上半部分稱為"勾",下半部分稱為"股"。商高那段話的意思就是說:當直角三角形的兩條直角邊分別為3(短邊)和4(長邊)時,徑隅(就是弦)則為5。以後人們就簡單地把這個事實說成"勾三股四弦五"。由於勾股定理的內容最早見於商高的話中,所以人們就把這個定理叫作"商高定理"。 畢達哥拉斯(Pythagoras)是古希臘數學家,他是公元前五世紀的人,比商高晚出生五百多年。希臘另一位數學家歐幾里德(Euclid,是公元前三百年左右的人)在編著《幾何原本》時,認為這個定理是畢達哥達斯最早發現的,所以他就把這個定理稱為"畢達哥拉斯定理",以後就流傳開了。
關於勾股定理的發現,《周髀算經》上說:"故禹之所以治天下者,此數之所由生也。""此數"指的是"勾三股四弦五",這句話的意思就是說:勾三股四弦五這種關系是在大禹治水時發現的。
勾股定理的應用非常廣泛。我國戰國時期另一部古籍《路史後記十二注》中就有這樣的記載:"禹治洪水決流江河,望山川之形,定高下之勢,除滔天之災,使注東海,無漫溺之患,此勾股之所系生也。"這段話的意思是說:大禹為了治理洪水,使不決流江河,根據地勢高低,決定水流走向,因勢利導,使洪水注入海中,不再有大水漫溺的災害,是應用勾股定理的結果。
無聲勝有聲
在數學上也不乏無聲勝有聲這種意境。1903年,在紐約的一次數學報告會上,數學家科樂上了講台,他沒有說一句話,只是用粉筆在黑板上寫了兩數的演算結果,一個是2的67次方-1,另一個是193707721×761838257287,兩個算式的結果完全相同,這時,全場爆發出經久不息的掌聲。這是為什麼呢?
因為科樂解決了兩百年來一直沒弄清的問題,即2是67次方-1是不是質數?現在既然它等於兩個數的乘積,可以分解成兩個因數,因此證明了2是67次方-1不是質數,而是合數。
科爾只做了一個簡短的無聲的報告,可這是他花了3年中全部星期天的時間,才得出的結論。在這簡單算式中所蘊含的勇氣,毅力和努力,比洋洋灑灑的萬言報告更具魅力。
為什麼時間和角度的單位用六十進位制 時間的單位是小時,角度的單位是度,從表面上看,它們完全沒有關系。可是,為什麼它們都分成分、秒等名稱相同的小單位呢?為什麼又都用六十進位制呢? 我們仔細研究一下,就知道這兩種量是緊密聯系著的。原來,古代人由於生產勞動的需要,要研究天文和歷法,就牽涉到時間和角度了。譬如研究晝夜的變化,就要觀察地球的自轉,這里自轉的角度和時間是緊密地聯系在一起的。因為歷法需要的精確度較高,時間的單位"小時"、角度的單位"度"都嫌太大,必須進一步研究它們的小數。時間和角度都要求它們的小數單位具有這樣的性質:使1/2、1/3、1/4、1/5、1/6等都能成為它的整數倍。以1/60作為單位,就正好具有這個性質。譬如:1/2等於30個1/60,1/3等於20個1/60,1/4等於15個1/60…… 數學上習慣把這個1/60的單位叫做"分",用符號"′"來表示;把1分的1/60的單位叫做"秒",用符號"″"來表示。時間和角度都用分、秒作小數單位。 這個小數的進位制在表示有些數字時很方便。例如常遇到的1/3,在十進位制里要變成無限小數,但在這種進位制中就是一個整數。 這種六十進位制(嚴格地說是六十退位制)的小數記數法,在天文歷法方面已長久地為全世界的科學家們所習慣,所以也就一直沿用到今天。
哥德巴赫猜想 哥德巴赫(Goldbach C.,1690.3.18~1764.11.20)是德國數學家; 在1742年6月7日給歐拉的信中,哥德巴赫提出了一個命題:任何大於5的奇數都是三個素數之和。 但這怎樣證明呢?雖然做過的每一次試驗都得到了上述結果,但是不可能把所有的奇數都拿來檢驗,需要的是一般的證明,而不是個別的檢驗。" 歐拉回信又提出了另一個命題:任何一個大於2的偶數都是兩個素數之和。但是這個命題他也沒能給予證明。現在通常把這兩個命題統稱為哥德巴赫猜想 二百多年來,盡管許許多多的數學家為解決這個猜想付出了艱辛的勞動,迄今為止它仍然是一個既沒有得到正面證明也沒有被推翻的命題。
夠了吧,自己選擇吧
回答人的補充 2009-08-15 10:10
一次只能一萬字,而且要審核,比較慢,所以第二部分放這里
『捌』 數學手抄報怎麼做
手抄報是中學生開展課外活動的形式之一。學生直接參與編輯、撰寫、製作等的全過程,深受學生的喜愛。每當重大的節日我們都會以各種各樣的形式來表達,或祝願或慶祝或歌功,比如迎元旦、迎「五四」、慶「七一」、慶國慶等。最近由中央教科所教育信息研究中心和中國教育情報研究會共同舉辦的「2003年首屆全國中小學生手抄報大賽」 ,許多學生積極參與,取得了一定的成績。
在這里,我與大家談談怎樣進行手抄報的設計與製作,大體上可以從這三個方面來闡述:
一、美化與設計的步驟;
二、報頭、插圖與尾花的表現;
三、編輯抄寫描繪製作過程。
手抄報的美化與設計涉及的范圍主要有:版面設計與報頭、題花、插圖、尾花和花邊設計等。
1、版面設計
版面設計是出好手抄報的重要環節。
要設計好版面,須注意以下幾點:
(1)明確本期手抄報的主要內容是什麼,選用有一定意義的報頭(即報名)。一般報頭應設計在最醒目的位置;
(2)通讀所編輯或撰寫的文章並計算其字數,根據文章內容及篇幅的長短進行編輯(即排版)。一般重要文章放在顯要位置(即頭版);
(3)要注意長短文章穿插和橫排豎排相結合,使版面既工整又生動活潑;
(4)排版還須注意:字的排列以橫為主以豎為輔,行距要大於字距,篇與篇之間要有空隙,篇與邊之間要有空隙,且與紙的四周要有3CM左右的空邊。另外,報面始終要保持干凈、整潔。
2、報頭
報頭起著開門見山的作用,必須緊密配合主題內容,形象生動地反映手抄報的主要思想。報名要取得有積極、健康、富有意義的名字。
報頭一般由主題圖形,報頭文字和幾何形體色塊或花邊而定,或嚴肅或活潑、或方形或圓形、或素雅或重彩。
報頭設計應注意:
(1)構圖要穩定,畫面結構要緊湊,報頭在設計與表現手法上力求簡煉,要反映手抄報的主題,起「一目瞭然」之效;
(2)其字要大,字體或行或楷,或彩色或黑白;
(3)其位置有幾種設計方案:一是排版設計為兩個版面的,應放在右上部;二是排版設計為整版的,則可或正中或左上或右上。一般均設計在版面的上部,不宜放在其下端。
3、題頭
題頭(即題花)一般在文章前端或與文章題圖結合在一起。設計題頭要注意以題目文字為主,字略大。裝飾圖形須根據文章內容及版面的需要而定。文章標題字要書寫得小於報題的文字,要大於正文的文字。總之,要注意主次分明。
4、插圖與尾花
插圖是根據內容及版面裝飾的需要進行設計,好的插圖既可以美化版面又可以幫助讀者理解文章內容。插圖及尾花占的位置不宜太大,易顯得空且亂。尾花大都是出於版面美化的需要而設計的,多以花草或幾何形圖案為主。插圖和尾花並不是所有的文章都需要的,並非多多益善,應得「畫龍點睛」之效。
5、花邊
花邊是手抄報中不可少的。有的報頭、題頭設計可用花邊;重要文章用花邊作外框;文章之間也可用花邊分隔;有的整個版面上下或左右也可用花邊隔開。在花邊的運用中常用的多是直線或波狀線等。
二、報頭畫、插圖與尾花的表現手法
報頭畫、插圖與尾花的表現手法大致可分為線描畫法和色塊畫法兩種。
1、線描畫法
要求形象簡煉、概括,用線准確,主次分明。作畫時要注意一定的步驟:
(1)一般扼要畫出主線----確定角度、方向和大小;
(2)再畫出與圖相關的比例、結構及透視;
(3)刻畫細部,結合形體結構、構圖、色調畫出線條的節奏變化;
(4)最後進行整理,使畫面完整統一。
2、色塊畫法
除要求造型准確外,還須善於處理色塊的搭配和變化關系,而這些關系的處理要從對象的需要出發,使版面色彩豐富。作畫時,可先畫鉛筆稿(力求造型准確),再均勻平塗大色塊;後刻畫細部;最後進行修整,使之更加統一完美。
線描畫法與色塊畫法,通常是同時使用,可以是多色亦可單色。不管是線描還是色塊畫法,最好不要只用鉛筆去畫。版面上的圖形或文字不能剪貼。
三、手抄報的編繪製作的步驟
編繪製作是落實由設想到具體著手完成的重要步驟。
其步驟有二:一是准備階段,另一是編制階段。
1、准備階段。
主要是各種材料、工具的准備。具體包括:擬定本期手抄報的報名;准備好一張白棒紙(大小視需要而定,有半開,四開,八開等,本次政教處舉辦的手抄報比賽是要求為《江西日報》大小,即半開);編輯、撰寫有關的文字材料(文章宜多准備些);書寫、繪圖工具等。
2、編制階段。
這個階段是手抄報製作的主要過程。 大致為:版面設計、抄寫過程、美化過程。
(1)版面設計:根據文章的長短進行排版,並畫好格子或格線(一般用鉛筆輕輕描出,手抄報製作完畢後可擦可不擦)。
(2)抄寫過程:指的是文章的書寫。手抄報的用紙多半是白色,故文字的書寫宜用碳素墨水;字體宜用行書和楷書,少用草書和篆書;字的個頭大小要適中(符合通常的閱讀習慣)。字寫得不是很漂亮不要怕,關鍵在於書寫一定要工整。另外,文章或標題中不能出現錯別字。
(3)美化過程:文章抄寫完畢後,即可進行插圖、尾花、花邊的繪制(不宜先插圖後抄寫),將整個版面美化。這個過程是手抄報版面出效果的關鍵過程。
手抄報可以是黑白的,也可是彩色的。可以是綜合性的,也可以專題性的。手抄報的製作設計與黑板報製作設計要求和步驟大體是相同的。
,鍛煉鍛煉自己,動手編繪出一份屬於你也屬於大家的手抄報吧
怎樣進行手抄報的設計與製作,大體上可以從這三個方面來闡述:
一、美化與設計的步驟;
二、報頭、插圖與尾花的表現;
三、編輯抄寫描繪製作過程。
一、美化與設計
手抄報的美化與設計涉及的范圍主要有:版面設計與報頭、題花、插圖、尾花和花邊設計等。
1、版面設計
版面設計是出好手抄報的重要環節。
要設計好版面,須注意以下幾點:
(1)明確本期手抄報的主要內容是什麼,選用有一定意義的報頭(即報名)。一般報頭應設計在最醒目的位置;
(2)通讀所編輯或撰寫的文章並計算其字數,根據文章內容及篇幅的長短進行編輯(即排版)。一般重要文章放在顯要位置(即頭版);
(3)要注意長短文章穿插和橫排豎排相結合,使版面既工整又生動活潑;
(4)排版還須注意:字的排列以橫為主以豎為輔,行距要大於字距,篇與篇之間要有空隙,篇與邊之間要有空隙,且與紙的四周要有3CM左右的空邊。另外,報面始終要保持干凈、整潔。
2、報頭
報頭起著開門見山的作用,必須緊密配合主題內容,形象生動地反映手抄報的主要思想。報名要取得有積極、健康、富有意義的名字。
報頭一般由主題圖形,報頭文字和幾何形體色塊或花邊而定,或嚴肅或活潑、或方形或圓形、或素雅或重彩。
報頭設計應注意:
(1)構圖要穩定,畫面結構要緊湊,報頭在設計與表現手法上力求簡煉,要反映手抄報的主題,起「一目瞭然」之效;
(2)其字要大,字體或行或楷,或彩色或黑白;
(3)其位置有幾種設計方案:一是排版設計為兩個版面的,應放在右上部;二是排版設計為整版的,則可或正中或左上或右上。一般均設計在版面的上部,不宜放在其下端。
3、題頭
題頭(即題花)一般在文章前端或與文章題圖結合在一起。設計題頭要注意以題目文字為主,字略大。裝飾圖形須根據文章內容及版面的需要而定。文章標題字要書寫得小於報題的文字,要大於正文的文字。總之,要注意主次分明。
4、插圖與尾花
插圖是根據內容及版面裝飾的需要進行設計,好的插圖既可以美化版面又可以幫助讀者理解文章內容。插圖及尾花占的位置不宜太大,易顯得空且亂。尾花大都是出於版面美化的需要而設計的,多以花草或幾何形圖案為主。插圖和尾花並不是所有的文章都需要的,並非多多益善,應得「畫龍點睛」之效。
5、花邊
花邊是手抄報中不可少的。有的報頭、題頭設計可用花邊;重要文章用花邊作外框;文章之間也可用花邊分隔;有的整個版面上下或左右也可用花邊隔開。在花邊的運用中常用的多是直線或波狀線等。
二、報頭畫、插圖與尾花的表現手法
報頭畫、插圖與尾花的表現手法大致可分為線描畫法和色塊畫法兩種。
1、線描畫法
要求形象簡煉、概括,用線准確,主次分明。作畫時要注意一定的步驟:
(1)一般扼要畫出主線----確定角度、方向和大小;
(2)再畫出與圖相關的比例、結構及透視;
(3)刻畫細部,結合形體結構、構圖、色調畫出線條的節奏變化;
(4)最後進行整理,使畫面完整統一。
2、色塊畫法
除要求造型准確外,還須善於處理色塊的搭配和變化關系,而這些關系的處理要從對象的需要出發,使版面色彩豐富。作畫時,可先畫鉛筆稿(力求造型准確),再均勻平塗大色塊;後刻畫細部;最後進行修整,使之更加統一完美。
線描畫法與色塊畫法,通常是同時使用,可以是多色亦可單色。不管是線描還是色塊畫法,最好不要只用鉛筆去畫。版面上的圖形或文字不能剪貼。
三、手抄報的編繪製作的步驟
編繪製作是落實由設想到具體著手完成的重要步驟。
其步驟有二:一是准備階段,另一是編制階段。
1、准備階段。
主要是各種材料、工具的准備。具體包括:擬定本期手抄報的報名;准備好一張白棒紙(大小視需要而定,有半開,四開,八開等,本次政教處舉辦的手抄報比賽是要求為《江西日報》大小,即半開);編輯、撰寫有關的文字材料(文章宜多准備些);書寫、繪圖工具等。
2、編制階段。
這個階段是手抄報製作的主要過程。 大致為:版面設計、抄寫過程、美化過程。
(1)版面設計:根據文章的長短進行排版,並畫好格子或格線(一般用鉛筆輕輕描出,手抄報製作完畢後可擦可不擦)。
(2)抄寫過程:指的是文章的書寫。手抄報的用紙多半是白色,故文字的書寫宜用碳素墨水;字體宜用行書和楷書,少用草書和篆書;字的個頭大小要適中(符合通常的閱讀習慣)。字寫得不是很漂亮不要怕,關鍵在於書寫一定要工整。另外,文章或標題中不能出現錯別字。
(3)美化過程:文章抄寫完畢後,即可進行插圖、尾花、花邊的繪制(不宜先插圖後抄寫),將整個版面美化。這個過程是手抄報版面出效果的關鍵過程。
手抄報可以是黑白的,也可是彩色的。可以是綜合性的,也可以專題性的。手抄報的製作設計與黑板報製作設計要求和步驟大體是相同的。
『玖』 數學手抄報
可以寫數學名言和數學故事,比如:
◇數學知識是最純粹的邏輯思維活動,以及最高級智能活力美學體現。——普林舍姆
◇歷史使人聰明,詩歌使人機智,數學使人精細。——培根
◇數學是最寶貴的研究精神之一。——華羅庚
◇沒有哪門學科能比數學更為清晰地闡明自然界的和諧性。——卡羅斯
◇數學是規律和理論的裁判和主宰者。——本傑明
◇音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人
獲得智慧,科學可改善物質生活,但數學能給予以上的一切。. ————克萊因.
◇音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人
獲得智慧,科學可改善物質生活,但數學能給予以上的一切。. ————克萊因.
◇數學的本質在於它的自由. ——康扥爾(Cantor)
◇在數學的領域中, 提出問題的藝術比解答問題的藝術更為重要. ——康扥爾(Cantor)
◇沒有任何問題可以向無窮那樣深深的觸動人的情感, 很少有別的觀念能像無窮那樣激勵理智產生富有成果的思想, 然而也沒有任何其他的概念能向無窮那樣需要加以闡明.——希爾伯特(Hilbert)
◇數學是無窮的科學. ——外爾(Weil)
◇問題是數學的心臟.—— 哈爾默斯(P.R.Halmos )
◇只要一門科學分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預示著獨立發展的終止或衰亡.—— 希爾伯特(Hilbert )
◇數學中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深.——高斯 (Gauss)
◇數學是科學的皇後,而數論是數學的皇後 ——高斯(Gauss)
◇自然這一巨著是用數學符號寫成的) ——伽里略
◇數學是一項工具,特別適合於處理任何一類抽象概念,而且,它在這方面的作用是無止境的。因此,一本論述新物理學的書,如果不是單純地描述實驗工作的,其本質上,必定是一本數學書。 ——狄拉克
◇數學受到高度尊崇的另一個原因在於:恰恰是數學,給精密的自然科學提供了無可置疑的可靠保證,沒有數學,它們無法達到這樣的可靠程度。 ——愛因斯坦
◇純粹數學,就其本質而言,是邏輯思想的詩篇。——愛因斯坦
◇數學科學呈現出一個最輝煌的例子,表明不用藉助實驗,純粹的推理能成功地擴大人們的認知領域。 ——康德
◇一個人就好像一個分數,他的實際才能好比分子,而他對自己的估價好比分母。分母越大,則分數的值就越小。 ——托爾斯泰
◇時間是個常數,但對勤奮者來說,是個『變數』。用『分』來計算時間的人比用『小時』來計算時間的人時間多59倍。
——雷巴柯夫
◇在學習中要敢於做減法,就是減去前人已經解決的部分,看看還有那些問題沒有解決,需要我們去探索解決 —— 華羅庚
◇數學中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深。數學是科學之王。 ——高斯
◇數學是無窮的科學。 ——赫爾曼外爾
◇在數學的天地里,重要的不是我們知道什麼,而是我們怎麼知道什麼。
——畢達哥拉斯
◇一門科學,只有當它成功地運用數學時,才能達到真正完善的地步。
——馬克思
◇一個國家的科學水平可以用它消耗的數學來度量。
——拉奧
◇A=x+y+z. A代表成功,x代表艱苦的勞動,y代表正確的方法,z代表少說空話。
-----愛因斯坦
◇天才=1%的靈感+99%的血汗。 ------愛迪生
◇要利用時間,思考一下一天之中做了些什麼,是「正號」還是「負號」,倘若是「+」,則進步;倘若是「—」,就得吸取教訓,採取措施。 ------季米特洛夫
◇人生應該象線段,有始有終;不應象射線,有始無終。
◇人生軌跡都是圓,但是你可以將圓的半徑延長些。
◇一個人要在有限的生活區域內求得最大值。
◇20多歲的人是銳角,30多歲的人是鈍角,40多歲的人是平角,50多歲的人是周角。
◇做朋友要象垂線,互相交流;做對手要象平行線,雖然不來往,但是你追我趕,互相超越。
數學故事:
那是1618年11月,笛卡兒在軍隊服役,駐扎在荷蘭的一個小小的城填布萊達。一天,他在街上散步,看見一群人聚集在一張貼布告的招貼牌附近,情緒興奮地議論紛紛。他好奇地走到跟前。但由於他聽不懂荷蘭話,也看不懂布告上的荷蘭字,他就用法語向旁邊的人打聽。有一位能聽懂法語的過路人不以為然的看了看這個年青的士兵,告訴他,這里貼的是一張解數學題的有獎競賽。要想讓他給翻譯一下布告上所有的內容,需要有一個條件,就是士兵要給他送來這張布告上所有問題的答案。這位荷蘭人自稱,他是物理學、醫學和數學教師別克曼。出乎意料的是,第二天,笛卡兒真地帶著全部問題的答案見他來了;尤其是使別克曼吃驚地是,這位青年的法國士兵的全部答案竟然一點兒差錯都沒有。於是,二人成了好朋友,笛卡兒成了別克曼家的常客。
笛卡兒在別克曼指導下開始認真研究數學,別克曼還教笛卡兒學習荷蘭語。這種情況一直延續了兩年多,為笛卡兒以後創立解析幾何打下了良好的基礎。而且,據說別克曼教笛卡兒學會的荷蘭話還救過笛卡兒一命:
有一次笛卡兒和他的僕人一起乘一艘不大的商船駛往法國,船費不很貴。沒想到這是一艘海盜船,船長和他的副手以為笛卡兒主僕二人是法國人,不懂荷蘭語,就用荷蘭語商量殺害他們倆搶掠他們錢財的事。笛卡兒聽懂了船長和他副手的話,悄悄做准備,終於制服了船長,才安全回到了法國。
八歲的高斯發現了數學定理
他八歲時進入鄉村小學讀書。教數學的老師是一個從城裡來的人,覺得在一個窮鄉僻壤教幾個小猢猻讀書,真是大材小用。而他又有些偏見:窮人的孩子天生都是笨蛋,教這些蠢笨的孩子念書不必認真,如果有機會還應該處罰他們,使自己在這枯燥的生活里添一些樂趣。
這一天正是數學教師情緒低落的一天。同學們看到老師那抑鬱的臉孔,心裡畏縮起來,知道老師又會在今天捉這些學生處罰了。
「你們今天替我算從1加2加3一直到100的和。誰算不出來就罰他不能回家吃午飯。」老師講了這句話後就一言不發的拿起一本小說坐在椅子上看去了。
教室里的小朋友們拿起石板開始計算:「1加2等於3,3加3等於6,6加4等於10……」一些小朋友加到一個數後就擦掉石板上的結果,再加下去,數越來越大,很不好算。有些孩子的小臉孔漲紅了,有些手心、額上滲出了汗來。
還不到半個小時,小高斯拿起了他的石板走上前去。「老師,答案是不是這樣?」
老師頭也不抬,揮著那肥厚的手,說:「去,回去再算!錯了。」他想不可能這么快就會有答案了。
可是高斯卻站著不動,把石板伸向老師面前:「老師!我想這個答案是對的。」
數學老師本來想怒吼起來,可是一看石板上整整齊齊寫了這樣的數:5050,他驚奇起來,因為他自己曾經算過,得到的數也是5050,這個8歲的小鬼怎麼這樣快就得到了這個數值呢?
高斯解釋他發現的一個方法,這個方法就是古時希臘人和中國人用來計算級數1+2+3+…+n的方法。高斯的發現使老師覺得羞愧,覺得自己以前目空一切和輕視窮人家的孩子的觀點是不對的。他以後也認真教起書來,並且還常從城裡買些數學書自己進修並借給高斯看。在他的鼓勵下,高斯以後便在數學上作了一些重要的研究了。
小歐拉智改羊圈
歐拉是數學史上著名的數學家,他在數論、幾何學、天文數學、微積分等好幾個數學的分支領域中都取得了出色的成就。不過,這個大數學家在孩提時代卻一點也不討老師的喜歡,他是一個被學校除了名的小學生。
事情是因為星星而引起的。 當時,小歐拉在一個教會學校里讀書。有一次,他向老師提問,天上有多少顆星星。老師是個神學的信徒,他不知道天上究竟有多少顆星,聖經上也沒有回答過。其實,天上的星星數不清,是無限的。我們的肉眼可見的星星也有幾千顆。這個老師不懂裝懂,回答歐拉說:"天有有多少顆星星,這無關緊要,只要知道天上的星星是上帝鑲嵌上去的就夠了。"
歐拉感到很奇怪:"天那麼大,那麼高,地上沒有扶梯,上帝是怎麼把星星一顆一顆鑲嵌到一在幕上的呢?上帝親自把它們一顆一顆地放在天幕,他為什麼忘記了星星的數目呢?上帝會不會太粗心了呢?
他向老師提出了心中的疑問,老師又一次被問住了,漲紅了臉,不知如何回答才好。老師的心中頓時升起一股怒氣,這不僅是因為一個才上學的孩子向老師問出了這樣的問題,使老師下不了台,更主要的是,老師把上帝看得高於一切。小歐拉居然責怪上帝為什麼沒有記住星星的數目,言外之意是對萬能的上帝提出了懷疑。在老師的心目中,這可是個嚴重的問題。
在歐拉的年代,對上帝是絕對不能懷疑的,人們只能做思想的奴隸,絕對不允許自由思考。小歐拉沒有與教會、與上帝"保持一致",老師就讓他離開學校回家。但是,在小歐拉心中,上帝神聖的光環消失了。他想,上帝是個窩囊廢,他怎麼連天上的星星也記不住?他又想,上帝是個獨裁者,連提出問題都成了罪。他又想,上帝也許是個別人編造出來的傢伙,根本就不存在。
回家後無事,他就幫助爸爸放羊,成了一個牧童。他一面放羊,一面讀書。他讀的書中,有不少數學書。
爸爸的羊群漸漸增多了,達到了100隻。原來的羊圈有點小了,爸爸決定建造一個新的羊圈。他用尺量出了一塊長方形的土地,長40米,寬15米,他一算,面積正好是600平方米,平均每一頭羊佔地6平方米。正打算動工的時候,他發現他的材料只夠圍100米的籬笆,不夠用。若要圍成長40米,寬15米的羊圈,其周長將是110米(15+15+40+40=110)父親感到很為難,若要按原計劃建造,就要再添10米長的材料;要是縮小面積,每頭羊的面積就會小於6平方米。
小歐拉卻向父親說,不用縮小羊圈,也不用擔心每頭羊的領地會小於原來的計劃。他有辦法。父親不相信小歐拉會有辦法,聽了沒有理他。小歐拉急了,大聲說,只有稍稍移動一下羊圈的樁子就行了。
父親聽了直搖頭,心想:"世界上哪有這樣便宜的事情?"但是,小歐拉卻堅持說,他一定能兩全齊美。父親終於同意讓兒子試試看。
小歐拉見父親同意了,站起身來,跑到准備動工的羊圈旁。他以一個木樁為中心,將原來的40米邊長截短,縮短到25米。父親著急了,說:"那怎麼成呢?那怎麼成呢?這個羊圈太小了,太小了。"小歐拉也不回答,跑到另一條邊上,將原來15米的邊長延長,又增加了10米,變成了25米。經這樣一改,原來計劃中的羊圈變成了一個25米邊長的正方形。然後,小歐拉很自信地對爸爸說:"現在,籬笆也夠了,面積也夠了。"
父親照著小歐拉設計的羊圈紮上了籬笆,100米長的籬笆真的夠了,不多不少,全部用光。面積也足夠了,而且還稍稍大了一些。父親心裡感到非常高興。孩子比自己聰明,真會動腦筋,將來一定大有出息。
父親感到,讓這么聰明的孩子放羊實在是及可惜了。後來,他想辦法讓小歐拉認識了一個大數學家伯努利。通過這位數學家的推薦,1720年,小歐拉成了巴塞爾大學的大學生。這一年,小歐拉13歲,是這所大學最年輕的大學生。
數學趣味題:
1、兩個男孩各騎一輛自行車,從相距2O英里(1英里合1.6093千米)的兩個地方,開始沿直線相向騎行。在他們起步的那一瞬間,一輛自行車車把上的一隻蒼蠅,開始向另一輛自行車徑直飛去。它一到達另一輛自行車車把,就立即轉嚮往回飛行。這只蒼蠅如此往返,在兩輛自行車的車把之間來回飛行,直到兩輛自行車相遇為止。如果每輛自行車都以每小時1O英里的等速前進,蒼蠅以每小時15英里的等速飛行,那麼,蒼蠅總共飛行了多少英里?
答案
每輛自行車運動的速度是每小時10英里,兩者將在1小時後相遇於2O英里距離的中點。蒼蠅飛行的速度是每小時15英里,因此在1小時中,它總共飛行了15英里。
許多人試圖用復雜的方法求解這道題目。他們計算蒼蠅在兩輛自行車車把之間的第一次路程,然後是返回的路程,依此類推,算出那些越來越短的路程。但這將涉及所謂無窮級數求和,這是非常復雜的高等數學。據說,在一次雞尾酒會上,有人向約翰?馮·諾伊曼(John von Neumann, 1903~1957,20世紀最偉大的數學家之一。)提出這個問題,他思索片刻便給出正確答案。提問者顯得有點沮喪,他解釋說,絕大多數數學家總是忽略能解決這個問題的簡單方法,而去採用無窮級數求和的復雜方法。
馮·諾伊曼臉上露出驚奇的神色。「可是,我用的是無窮級數求和的方法.」他解釋道
2、 有位漁夫,頭戴一頂大草帽,坐在劃艇上在一條河中釣魚。河水的流動速度是每小時3英里,他的劃艇以同樣的速度順流而下。「我得向上游劃行幾英里,」他自言自語道,「這里的魚兒不願上鉤!」
正當他開始向上游劃行的時候,一陣風把他的草帽吹落到船旁的水中。但是,我們這位漁夫並沒有注意到他的草帽丟了,仍然向上游劃行。直到他劃行到船與草帽相距5英里的時候,他才發覺這一點。於是他立即掉轉船頭,向下游劃去,終於追上了他那頂在水中漂流的草帽。
在靜水中,漁夫劃行的速度總是每小時5英里。在他向上游或下游劃行時,一直保持這個速度不變。當然,這並不是他相對於河岸的速度。例如,當他以每小時5英里的速度向上游劃行時,河水將以每小時3英里的速度把他向下游拖去,因此,他相對於河岸的速度僅是每小時2英里;當他向下游劃行時,他的劃行速度與河水的流動速度將共同作用,使得他相對於河岸的速度為每小時8英里。
如果漁夫是在下午2時丟失草帽的,那麼他找回草帽是在什麼時候?
答案
由於河水的流動速度對劃艇和草帽產生同樣的影響,所以在求解這道趣題的時候可以對河水的流動速度完全不予考慮。雖然是河水在流動而河岸保持不動,但是我們可以設想是河水完全靜止而河岸在移動。就我們所關心的劃艇與草帽來說,這種設想和上述情況毫無無差別。
既然漁夫離開草帽後劃行了5英里,那麼,他當然是又向回劃行了5英里,回到草帽那兒。因此,相對於河水來說,他總共劃行了10英里。漁夫相對於河水的劃行速度為每小時5英里,所以他一定是總共花了2小時劃完這10英里。於是,他在下午4時找回了他那頂落水的草帽。
這種情況同計算地球表面上物體的速度和距離的情況相類似。地球雖然旋轉著穿越太空,但是這種運動對它表面上的一切物體產生同樣的效應,因此對於絕大多數速度和距離的問題,地球的這種運動可以完全不予考慮.
3、一架飛機從A城飛往B城,然後返回A城。在無風的情況下,它整個往返飛行的平均地速(相對於地面的速度)為每小時100英里。假設沿著從A城到B城的方向筆直地刮著一股持續的大風。如果在飛機往返飛行的整個過程中發動機的速度同往常完全一樣,這股風將對飛機往返飛行的平均地速有何影響?
懷特先生論證道:「這股風根本不會影響平均地速。在飛機從A城飛往B城的過程中,大風將加快飛機的速度,但在返回的過程中大風將以相等的數量減緩飛機的速度。」「這似乎言之有理,」布朗先生表示贊同,「但是,假如風速是每小時l00英里。飛機將以每小時200英里的速度從A城飛往B城,但它返回時的速度將是零!飛機根本不能飛回來!」你能解釋這似乎矛盾的現象嗎?
答案
懷特先生說,這股風在一個方向上給飛機速度的增加量等於在另一個方向上給飛機速度的減少量。這是對的。但是,他說這股風對飛機整個往返飛行的平均地速不發生影響,這就錯了。
懷特先生的失誤在於:他沒有考慮飛機分別在這兩種速度下所用的時間。
逆風的回程飛行所用的時間,要比順風的去程飛行所用的時間長得多。其結果是,地速被減緩了的飛行過程要花費更多的時間,因而往返飛行的平均地速要低於無風時的情況。
風越大,平均地速降低得越厲害。當風速等於或超過飛機的速度時,往返飛行的平均地速變為零,因為飛機不能往回飛了。
4、《孫子算經》是唐初作為「算學」教科書的著名的《算經十書》之一,共三卷,上卷敘述算籌記數的制度和乘除法則,中卷舉例說明籌算分數法和開平方法,都是了解中國古代籌算的重要資料。下卷收集了一些算術難題,「雞兔同籠」問題是其中之一。原題如下:令有雉(雞)兔同籠,上有三十五頭,下有九十四足。
問雄、兔各幾何?
原書的解法是;設頭數是a,足數是b。則b/2-a是兔數,a-(b/2-a)是雉數。這個解法確實是奇妙的。原書在解這個問題時,很可能是採用了方程的方法。
設x為雉數,y為兔數,則有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根據這組公式很容易得出原題的答案:兔12隻,雉22隻。
5、我們大家一起來試營一家有80間套房的旅館,看看知識如何轉化為財富。
經調查得知,若我們把每日租金定價為160元,則可客滿;而租金每漲20元,就會失去3位客人。 每間住了人的客房每日所需服務、維修等項支出共計40元。
問題:我們該如何定價才能賺最多的錢?
答案:日租金360元。
雖然比客滿價高出200元,因此失去30位客人,但餘下的50位客人還是能給我們帶來360*50=18000元的收入; 扣除50間房的支出40*50=2000元,每日凈賺16000元。而客滿時凈利潤只有160*80-40*80=9600元。
當然,所謂「經調查得知」的行情實乃本人杜撰,據此入市,風險自擔。