數學報圖片大全
1. 數學小報圖片大全四年級
這是比較漂亮的一張啦,還有的在網路網上能查到啊。所有的圖片網站也都有,好多好多,可以自己找和你胃口的啦!
2. 數學小報圖片
直接網頁搜索就有很多。
3. 發一些圖片給我,關於數學手抄報的版面設計!謝謝!
阿拉伯數字
在生活中,我們經常會用到0、、2、3、4、5、6、7、8、9這些數字。那麼你知道這些數字是誰發明的嗎?
這些數字元號原來是古代印度人發明的,後來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發明的,就把它們叫做"阿拉伯數字",因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做阿拉伯數字。
現在,阿拉伯數字已成了全世界通用的數字元
九九歌
九九歌就是我們現在使用的乘法口訣。
遠在公元前的春秋戰國時代,九九歌就已經被人們廣泛使用。在當時的許多著作中,都有關於九九歌的記載。最初的九九歌是從"九九八十一"起到"二二如四"止,共36句。因為是從"九九八十一"開始,所以取名九九歌。大約在公元五至十世紀間,九九歌才擴充到"一一如一"。大約在公元十三、十四世紀,九九歌的順序才變成和現在所用的一樣,從"一一如一"起到"九九八十一"止。
現在我國使用的乘法口訣有兩種,一種是45句的,通常稱為"小九九";還有一種是81句的,通常稱為"大九九"。
數學符號的起源
數學除了記數以外,還需要一套數學符號來表示數和數、數和形的相互關系。數學符號的發明和使用比數字晚,但是數量多得多。現在常用的有200多個,初中數學書里就不下20多種。它們都有一段有趣的經歷。
例如加號曾經有好幾種,現在通用"+"號。
"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。
"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。
到了十五世紀,德國數學家魏德美正式確定:"+"用作加號,"-"用作減號。
乘號曾經用過十幾種,現在通用兩種。一個是"×",最早是英國數學家奧屈特1631年提出的;一個是"· ",最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:"×"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。可是這個符號現在應用到集合論中去了。
到了十八世紀,美國數學家歐德萊確定,把"×"作為乘號。他認為"×"是"+"斜起來寫,是另一種表示增加的符號。
"÷"最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將"÷"作為除號。
十六世紀法國數學家維葉特用"="表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號"="就從1540年開始使用起來。
1591年,法國數學家韋達在菱中大量使用這個符號,才逐漸為人們接受。十七世紀德國萊布尼茨廣泛使用了"="號,他還在幾何學中用"∽"表示相似,用"≌"表示全等。
大於號"〉"和小於號"〈",是1631年英國著名代數學家赫銳奧特創用。至於≯""≮"、"≠"這三個符號的出現,是很晚很晚的事了。大括弧"{ }"和中括弧"[ ]"是代數創始人之一魏治德創造的。
奇妙的圓形
圓形,是一個看來簡單,實際上是很奇妙的圓形。
古代人最早是從太陽,從陰歷十五的月亮得到圓的概念的。一萬八千年前的山頂洞人曾經在獸牙、礫石和石珠上鑽孔,那些孔有的就很圓。
以後到了陶器時代,許多陶器都是圓的。圓的陶器是將泥土放在一個轉盤上製成的。
當人們開始紡線,又制出了圓形的石紡綞或陶紡綞。
古代人還發現圓的木頭滾著走比較省勁。後來他們在搬運重物的時候,就把幾段圓木墊在大樹、大石頭下面滾著走,這樣當然比扛著走省勁得多。
大約在6000年前,美索不達米亞人,做出了世界上第一個輪子--圓的木盤。大約在4000多年前,人們將圓的木盤固定在木架下,這就成了最初的車子。
會作圓,但不一定就懂得圓的性質。古代埃及人就認為:圓,是神賜給人的神聖圖形。一直到兩千多年前我國的墨子(約公元前468-前376年)才給圓下了一個定義:"一中同長也"。意思是說:圓有一個圓心,圓心到圓周的長都相等。這個定義比希臘數學家歐幾里得(約公元前330-前275年)給圓下定義要早100年。
圓周率,也就是圓周與直徑的比值,是一個非常奇特的數。
《周髀算經》上說"徑一周三",把圓周率看成3,這只是一個近似值。美索不達來亞人在作第一個輪子的時候,也只知道圓周率是3。
魏晉時期的劉徽於公元263年給《九章算術》作注。他發現"徑一周三"只是圓內接正六邊形周長和直徑的比值。他創立了割圓術,認為圓內接正多連形邊數無限增加時,周長就越逼近圓周長。他算到圓內接正3072邊形的圓周率,π= 3927/1250。劉徽已經把極限的概念運用於解決實際的數學問題之中,這在世界數學史上也是一項重大的成就。
祖沖之(公元429-500年)在前人的計算基礎上繼續推算,求出圓周率在3.1415926與3.1415927之間,是世界上最早的七位小數精確值,他還用兩個分數值來表示圓周率:22/7稱為約率,355/113稱為密率。
在歐洲,直到1000年後的十六世紀,德國人鄂圖(公元1573年)和安托尼茲才得到這個數值。
現在有了電子計算機,圓周率已經算到了小數點後一千萬以上了。
從一加到一百
七歲時高斯進了 St. Catherine小學。大約在十歲時,老師在算數課上出了一道難題:"把 1到 100的整數寫下來,然後把它們加起來!"每當有考試時他們有如下的習慣:第一個做完的就把石板﹝當時通行,寫字用﹞面朝下地放在老師的桌子上,第二個做完的就把石板擺在第一張石板上,就這樣一個一個落起來。這個難題當然難不倒學過算數級數的人,但這些孩子才剛開始學算數呢!老師心想他可以休息一下了。但他錯了,因為還不到幾秒鍾,高斯已經把石板放在講桌上了,同時說道:「答案在這兒!」其他的學生把數字一個個加起來,額頭都出了汗水,但高斯卻靜靜坐著,對老師投來的,輕蔑的、懷疑的眼光毫不在意。考完後,老師一張張地檢查著石板。大部分都做錯了,學生就吃了一頓鞭打。最後,高斯的石板被翻了過來,只見上面只有一個數字:5050(用不著說,這是正確的答案。)老師吃了一驚,高斯就解釋他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50對和為 101的數目,所以答案是 50×101=5050。由此可見高斯找到了算術級數的對稱性,然後就像求得一般算術級數合的過程一樣,把數目一對對地湊在一起。
勾股定理
勾股定理:在任何一個直角三角形中,兩條直角邊的平方之和一定等於斜邊的平方。
這個定理在中國又稱為"商高定理",在外國稱為"畢達哥拉斯定理"。為什麼一個定理有這么多名稱呢?商高是公元前十一世紀的中國人。當時中國的朝代是西周,是奴隸社會時期。在中國古代大約是戰國時期西漢的數學著作《周髀算經》中記錄著商高同周公的一段對話。商高說:"…故折矩,勾廣三,股修四,經隅五。"什麼是"勾、股"呢?在中國古代,人們把彎曲成直角的手臂的上半部分稱為"勾",下半部分稱為"股"。商高那段話的意思就是說:當直角三角形的兩條直角邊分別為3(短邊)和4(長邊)時,徑隅(就是弦)則為5。以後人們就簡單地把這個事實說成"勾三股四弦五"。由於勾股定理的內容最早見於商高的話中,所以人們就把這個定理叫作"商高定理"。 畢達哥拉斯(Pythagoras)是古希臘數學家,他是公元前五世紀的人,比商高晚出生五百多年。希臘另一位數學家歐幾里德(Euclid,是公元前三百年左右的人)在編著《幾何原本》時,認為這個定理是畢達哥達斯最早發現的,所以他就把這個定理稱為"畢達哥拉斯定理",以後就流傳開了。
關於勾股定理的發現,《周髀算經》上說:"故禹之所以治天下者,此數之所由生也。""此數"指的是"勾三股四弦五",這句話的意思就是說:勾三股四弦五這種關系是在大禹治水時發現的。
勾股定理的應用非常廣泛。我國戰國時期另一部古籍《路史後記十二注》中就有這樣的記載:"禹治洪水決流江河,望山川之形,定高下之勢,除滔天之災,使注東海,無漫溺之患,此勾股之所系生也。"這段話的意思是說:大禹為了治理洪水,使不決流江河,根據地勢高低,決定水流走向,因勢利導,使洪水注入海中,不再有大水漫溺的災害,是應用勾股定理的結果。
無聲勝有聲
在數學上也不乏無聲勝有聲這種意境。1903年,在紐約的一次數學報告會上,數學家科樂上了講台,他沒有說一句話,只是用粉筆在黑板上寫了兩數的演算結果,一個是2的67次方-1,另一個是193707721×761838257287,兩個算式的結果完全相同,這時,全場爆發出經久不息的掌聲。這是為什麼呢?
因為科樂解決了兩百年來一直沒弄清的問題,即2是67次方-1是不是質數?現在既然它等於兩個數的乘積,可以分解成兩個因數,因此證明了2是67次方-1不是質數,而是合數。
科爾只做了一個簡短的無聲的報告,可這是他花了3年中全部星期天的時間,才得出的結論。在這簡單算式中所蘊含的勇氣,毅力和努力,比洋洋灑灑的萬言報告更具魅力。
為什麼時間和角度的單位用六十進位制 時間的單位是小時,角度的單位是度,從表面上看,它們完全沒有關系。可是,為什麼它們都分成分、秒等名稱相同的小單位呢?為什麼又都用六十進位制呢? 我們仔細研究一下,就知道這兩種量是緊密聯系著的。原來,古代人由於生產勞動的需要,要研究天文和歷法,就牽涉到時間和角度了。譬如研究晝夜的變化,就要觀察地球的自轉,這里自轉的角度和時間是緊密地聯系在一起的。因為歷法需要的精確度較高,時間的單位"小時"、角度的單位"度"都嫌太大,必須進一步研究它們的小數。時間和角度都要求它們的小數單位具有這樣的性質:使1/2、1/3、1/4、1/5、1/6等都能成為它的整數倍。以1/60作為單位,就正好具有這個性質。譬如:1/2等於30個1/60,1/3等於20個1/60,1/4等於15個1/60…… 數學上習慣把這個1/60的單位叫做"分",用符號"′"來表示;把1分的1/60的單位叫做"秒",用符號"″"來表示。時間和角度都用分、秒作小數單位。 這個小數的進位制在表示有些數字時很方便。例如常遇到的1/3,在十進位制里要變成無限小數,但在這種進位制中就是一個整數。 這種六十進位制(嚴格地說是六十退位制)的小數記數法,在天文歷法方面已長久地為全世界的科學家們所習慣,所以也就一直沿用到今天。
哥德巴赫猜想 哥德巴赫(Goldbach C.,1690.3.18~1764.11.20)是德國數學家; 在1742年6月7日給歐拉的信中,哥德巴赫提出了一個命題:任何大於5的奇數都是三個素數之和。 但這怎樣證明呢?雖然做過的每一次試驗都得到了上述結果,但是不可能把所有的奇數都拿來檢驗,需要的是一般的證明,而不是個別的檢驗。" 歐拉回信又提出了另一個命題:任何一個大於2的偶數都是兩個素數之和。但是這個命題他也沒能給予證明。現在通常把這兩個命題統稱為哥德巴赫猜想 二百多年來,盡管許許多多的數學家為解決這個猜想付出了艱辛的勞動,迄今為止它仍然是一個既沒有得到正面證明也沒有被推翻的命題。
夠了吧,自己選擇吧
回答人的補充 2009-08-15 10:10
一次只能一萬字,而且要審核,比較慢,所以第二部分放這里
4. 數學手抄報,必須是圖片,A4紙。
數學手抄報,必須是圖片
5. 有什麼關於數學的圖畫(可以在數學手抄報上畫的那些)
關於什麼主題的亞?就是數學嗎?你在網路圖片直接打數學……有一個小人那個牌子上邊寫著「數學」,呵呵……要不查查別的數學報是怎麼畫的,在網路網頁和畫圖打「數學報」看看。祝你成功~
6. 誰有小學生數學手抄報的圖片啊
去看http://image..com
7. 五年級數學小報,要圖片
某商店規定一種商品一次購買不超過10件,每件5元;超過10
件,超過部分每件3元。如果甲比乙多付19元,那麼甲乙各買了幾件?
思考過程:
假設甲、乙購買的件數都不超過10件,那麼甲比乙多付的錢一定是5的倍數,即5元、10元、15元、20元等,總之不會是19元。
假設甲、乙購買的件數都超過10件,那麼甲比乙多付的錢一定是3的倍數,即3元、6元、9元、12元、15元、18元、21元等,總之也不會是19元。
所以一定是甲購買的件數超過10件,乙購買的件數不超過10件。那麼甲花的錢一定超過50元,又根據「甲比乙多付19元」可以得出乙花的錢也一定超過31元,因此乙購買的件數只能是7件、8件、9件或10件。
假設乙購買7件,那麼花35元,因此甲花54元,又根據甲購買的未超過10件的部分需花50元,得出甲超過10件部分花4元,顯然與「超過部分每件3元」矛盾。
假設乙購買8件,那麼花40元,因此甲花59元,又根據甲購買的未超過10件的部分需花50元,得出甲超過10件部分花9元,與「超過部分每件3元」不矛盾。
假設乙購買9件,那麼花45元,因此甲花64元,又根據甲購買的未超過10件的部分需花50元,得出甲超過10件部分花14元,顯然又與「超過部分每件3元」矛盾。
假設乙購買10件,那麼花50元,因此甲花69元,又根據甲購買的未超過10件的部分需花50元,得出甲超過10件部分花19元,顯然還是與「超過部分每件3元」矛盾。
所以,乙購買的件數一定是8件,那麼甲購買的件數就是13件。
2) 第一次買了3個足球和8個籃球共值500元,第二次買了4個足球和5個籃球共值525元,求一個足球和籃球各多少元?
思考過程:
顯然,1個足球比3個籃球貴25元,那麼3個足球比9個籃球貴75元。
假設第一次買的9是籃球和8個籃球,那麼只需要花425元,可以求出1個籃球25元。顯然1個足球100元。
所以,1個籃球25元,1個足球100元。
3)稱珠子
有9顆外形一模一樣的珠子,其中有一顆稍重一點。用一架沒有砝碼的天平,至少稱幾次才能找出這顆珠子來?
思考過程:
先把9顆珠子分成3堆,任取其中2堆,分別放在天平兩邊。
假如天平平衡,那所求珠子必在另外1堆里;假如天平不平衡,則那所求珠子必在天平下傾那邊。
再從有所求珠子的那堆里,任取2顆,分別放在天平兩邊。
假如天平平衡,那麼所求珠子就一定是未放在天平上的那顆;假如天平不平衡,那麼所求珠子就是天平下傾那邊的那顆。
所以,至少要稱2次,才能找出這顆珠子來。
喂朋友我可是好心好意地告訴你的哦最好當然就選我
8. 如何學好數學手抄報圖片大全,內容
學好數學手抄報圖片
9. 數學手抄報圖片
10. 數學手抄報(圖片)
http://image..com/i?tn=image&ct=201326592&lm=-1&cl=2&fm=ps&word=%CA%FD%D1%A7%CA%D6%B3%AD%B1%A8