五年級下冊數學小論文
人民幣中的數學問題
有一天,我跟媽媽去逛商場。媽媽進了超市買東西,讓我站在付錢的地方等她。我沒什麼事,就看著營業員阿姨收錢。看著看著,我忽然發現營業員阿姨收的錢都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民幣為什麼就沒有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我趕快跑去問媽媽,媽媽鼓勵我說:「好好動腦筋想想算算,媽媽相信你能自己弄明白為什麼的。」我定下心,仔細地想了起來。過了一會兒,我高興地跳了起來:「我知道了,因為只要有1元、2元、5元就可以隨意組成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同樣可以組成30元、40元、60元……」媽媽聽了直點頭,又向我提了一個問題:「如果只是為了能隨意組合的話,那隻要1元不就夠了嗎?干嗎還要2元、5元呢?」我說:「光用1元要組成大一點的數就不方便了呀。」這下媽媽露出了滿意的笑容,誇獎我會觀察,愛動腦筋,我聽了真比吃了我最喜歡吃的冰激凌還要舒服。
在此,我也想告訴其他的小朋友:其實生活中到處都有數學問題,只要你多留心觀察,多動腦思考,你就會有很多意外的發現,不信你就試一試!
❷ 五年級下冊數學小論文
還有小數除法難拿,要注意
❸ 小學五年級數學小論文(500字)
大家一定從小就開始奇怪了,0到底是怎麼來的呢?關於0的起源,有以下幾種觀點。①、古巴比倫的0的符號是用空位來表示的,例如要表示一百零一,古巴比倫寫作1。1②、在古印度數學中,發現0的最早記載是公元876年,歐洲許多數學家都同意這一觀點。公元6世紀,印度人就開始用「?」,後來變成了一個圓圈。到了公元九世紀就固定成了今天的「0」。③、0的故鄉在中國。我國最早的詩歌總集《詩經》中就有0的記載,只不過當時0的意思是「暴風雨末了的小雨滴」。在我國遠古時代的結繩記數法中,0是在對「有」的否定中出現的,意思是「沒有」。總之,有關0的起源還沒有一個定論。
但是無論如何,0自從一出現就具有非常旺盛的生命力,現在,它廣泛應用於社會的各個領域。
在課堂上,常聽老師說,0就是沒有的意思,你有0元錢,就代表沒有錢;你有0支筆,就代表你沒有筆。在這樣的情況下,溫度表上的0度就代表著沒有溫度嗎?答案肯定是否定的。純凈的冰水混合物的溫度就是0度。
想一想我們四年級學的素數與合數吧!老師是這樣解釋的「自然數可以分成3類:1、素數與合數,一個自然數只有一和它本身兩個因數的數是素數,因數大於3個就是合數,1單獨為一種。」那0也是自然數,它是最小的自然數,0到底是質數還是合數呢?這個誰也說不清楚。
我還有一個關於0的問題,自然數也可以分成奇數與偶數,能被2整除的數就是合數,反之就是奇數。0是奇數還是偶數呢?看上去像偶數,但又說不準,到底是什麼數誰也不清楚。
0還有許多奇妙有趣的事就在我們身邊呢,大家一起來發現吧!
以前寫的。祝你成功!
❹ 五年級下冊數學小論文怎麼寫
大千世界,無奇不有,在我們數學王國里也有許多有趣的事情。比如,在我現在的第九冊的練習冊中,有一題思考題是這樣說的:「一輛客車從東城開向西城,每小時行45千米,行了2.5小時後停下,這時剛好離東西兩城的中點18千米,東西兩城相距多少千米?王星與小英在解上面這道題時,計算的方法與結果都不一樣。王星算出的千米數比小英算出的千米數少,但是許老師卻說兩人的結果都對。這是為什麼呢?你想出來了沒有?你也列式算一下他們兩人的計算結果。」其實,這道題我們可以很快速地做出一種方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔細推敲看一下,就覺得不對勁。其實,在這里我們忽略了一個非常重要的條件,就是「這時剛好離東西城的中點18千米」這個條件中所說的「離」字,沒說是還沒到中點,還是超過了中點。如果是沒到中點離中點18千米的話,列式就是前面的那一種,如果是超過中點18千米的話,列式應該就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正確答案應該是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。兩個答案,也就是說王星的答案加上小英的答案才是全面的。
在日常學習中,往往有許多數學題目的答案是多個的,容易在練習或考試中被忽略,這就需要我們認真審題,喚醒生活經驗,仔細推敲,全面正確理解題意。否則就容易忽略了另外的答案,犯以偏概全的錯誤。
數學小論文
今天,在我們數學俱樂部里,老師給我們研究了一道有趣的題目,其實也是一道有些復雜的找規律題目,題目是這樣的「有一列數:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。這列數字中前240個數字的和是多少?」我一拿到題目,心裡猛然想到,這題目必須得按照規律來做!!!
想法一:開始我便先試著先3個一組來求和,6,5,10,9,12,15,14……。這樣一看,這些數字各有特徵,關鍵就是找不出合適的規律。於是,我又找4個一組來求和,8,10,12,16,20……。仔細一看,好像也沒什麼規律,我只好再試著找5個一組來求和,9,14,19,24……,這樣一來就非常明顯的看出它們是等數列,我非常高興,再把240÷5=48(組),5個一組,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那麼就可以求出末項的和,9+47×5=244,把首項加末項的和乘項數除以2,(9+244)×48÷2=6072。這樣就完成了!
想法二:我又發現每組開頭第一個數字恰好分別是1,2,3,4……48,那麼另一種方法就產生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。這樣想也合乎情理,也是一個理得清楚而且又實用的方法!
想法三:我又發現有N組時,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N組數的和,比如(1+2+3+4+……+48)×5+4×48=6072。這個規律也是要通過不斷來細心觀察與研究得來的,這個規律雖然有些抽象,但如果是自己弄明白了,那還要比其他兩種方法更容易些。
我做的只是其中的三種解法,其實方法還有很多,但是要靠自己來找其中的規律,解其中的奧秘!
❺ 五年級數學下冊小論文
五年級第二學期以來,我們學的主要內容就是長方體、正方體的表面積、體積和分數乘法的等。在長方體、正方體表面積的單元里,有許多典型的題目,而這些題目通常會導致我們思維混亂從而做錯。下面,我就來分析一道多次出錯的題目。
題目是這樣的:
一個長方體魚缸,長6米、寬2米、深1米,製作這個魚缸至少要多少平方米的玻璃?
我是這樣做的:
(6×2+2×1+6×1)×2-6×2
分析我的做法:
我先算出整個魚缸6個面的總面積,再減去缺少的那個面(上面)的面積。因為魚缸要養魚,所以不可能是完全封閉的,往往都是上面作為缸口,所以要減去上面的面積。
方法多種多樣,做這一道題還有另一種方法:
(2×1+6×1)×2+6×2
分析這樣的做法:
已知魚缸共有5個面,其中前面、後面是一組,左面、右面是一組,可以先算出前、後、左、4個面的總面積,再加上下面的面積,就可以求出魚缸5個面的面積,也就是魚缸的表面積。
最容易出錯的地方:
像這樣類型的題目,往往容易出錯的有2點。一是不聯合實際想,把魚缸的表面積當做6個面來計算;二是雖然知道魚缸只有5個面,但卻不知道少的面面積應當怎麼算。
我的建議:
當你做到這種題目時,應該畫一畫圖來幫助你,並在圖形上標明長、寬、高對應的數目,這樣題目就一目瞭然,做起來就會得心應手了。另外,還要注意單位是否一致!
以上就是我對「魚缸問題」的分析與見解
❻ 小學五年級下學期的數學小論文
「十一」期間,許多商場都在打折,趁著這個好時機,我和爸爸媽媽一起去了「萬霖」商場。
在二樓,我們看中了一套西服,它的標價是五百二十元,售貨員說:「現在正趕上『十一』,您可以選擇打八折或者滿二百返一百六十,兩種都差不多。」
真的差不多嗎?我腦子產生了這樣一個疑問。如果選擇打八折,那麼就要花520×0.8=416(元)。而要是滿兩百返一百六十呢。我們要先付520元,之後會拿到160×2=320(元)的返券,那我們實際就花了520-320=200(元)。416和200比起來,當然第二種比較好。
可是拿到返券之後呢?再買320元的東西又可以返160元,而這160元的返券離200元只差200-160=40(元),你要是填上這40元買東西,就又可以返160元。你難道不心動嗎?可如果真這樣做,你就掉入一個無底洞,花200返160,花200返160……你永遠也花不完剩下的錢。
商家為了賺錢可真是「費盡心機」啊!
❼ 小學五年級數學小論文
買西瓜的數學
那是星期六的一天下午,我嚷著要吃西瓜,媽媽爽快地答應了。於是我和奶奶就去買西瓜.
走進菜市場,我一眼就瞅住了一個西瓜堆兒。這里的西瓜是紅瓤的,又大又圓,看著就讓人垂涎三尺。
奶奶說:「給我挑個熟的!」那個小販在西瓜上敲了敲,說:「包熟!」於是放在電子秤上說:「一斤十塊半,3.6斤,17元8角。」奶奶說:「什麼?17元8角,這么貴?不買了不買了!」小販急了,說:「別,別,別,你去其它地方買就不貴嗎?我這兒可是全市最便宜的了,我這兒一斤十塊半,人家一斤半十五塊五了!」
奶奶數學本來就不好,被小販這么一說便糊塗了,我當時也在想:一斤十塊半,也就是1斤10.5元,單價是:10.5÷1=10.5元,而一斤半十五塊五,也就是1.5斤15.5元,它的單價是:15.5÷1.5,我沒細算,想想可能應該比10.5多,但是卻犯了個致命的錯誤。
算錯就會犯錯,我向奶奶使了個眼色,示意讓她買,於是奶奶說:「價格能少一點嗎?」「不能、不能,本能就比人家便宜,再少,我就虧大了,乾脆別賣了。」看著小販的「真誠」的態度,奶奶於是付了錢,拎著裝好西瓜的袋子就走了。
回到家,我把這件事告訴給媽媽。媽媽聽了之後又問了一遍價錢。我說:「小販說他這兒一斤十塊半,別人那一斤半十五塊五。」媽媽哭笑不得,問:「你怎麼知道別人那兒貴呢?你再好好的算算」。
「因為這兒是10.5÷1=10.5,而別人那兒是15.5÷1.5,反正他這兒便宜」我理直氣壯。
媽媽說:「你呀,太馬虎了,15.5÷1.5=10.333……,誰便宜呀!」
通過這件事,我知道了數學在我們日常生活中運用十分廣泛,學好數學十分重要,另外還要記住:「不要利用數學騙人,也不能不懂數學而被人騙!」
❽ 15篇五年級下冊數學小論文(300字)
大千世界,無奇不有,在我們數學王國里也有許多有趣的事情。比如,在我現在的第九冊的練習冊中,有一題思考題是這樣說的:「一輛客車從東城開向西城,每小時行45千米,行了2.5小時後停下,這時剛好離東西兩城的中點18千米,東西兩城相距多少千米?王星與小英在解上面這道題時,計算的方法與結果都不一樣。王星算出的千米數比小英算出的千米數少,但是許老師卻說兩人的結果都對。這是為什麼呢?你想出來了沒有?你也列式算一下他們兩人的計算結果。」其實,這道題我們可以很快速地做出一種方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔細推敲看一下,就覺得不對勁。其實,在這里我們忽略了一個非常重要的條件,就是「這時剛好離東西城的中點18千米」這個條件中所說的「離」字,沒說是還沒到中點,還是超過了中點。如果是沒到中點離中點18千米的話,列式就是前面的那一種,如果是超過中點18千米的話,列式應該就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正確答案應該是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。兩個答案,也就是說王星的答案加上小英的答案才是全面的。
在日常學習中,往往有許多數學題目的答案是多個的,容易在練習或考試中被忽略,這就需要我們認真審題,喚醒生活經驗,仔細推敲,全面正確理解題意。否則就容易忽略了另外的答案,犯以偏概全的錯誤。