高中數學小課題
『壹』 求高中數學研究課題(寫好了的)
http://www.yce.org.cn/teacher/showarticle.asp?articleid=4203
這里有一個寫好的了
『貳』 高中數學課題具體有哪些選擇有範例嗎
數學研究性學習課題 1、銀行存款利息和利稅的調查 2、氣象學中的數學應用問題 3、如何開發解題智慧 4、多面體歐拉定理的發現 5、購房貸款決策問題 6、有關房子粉刷的預算 7、日常生活中的悖論問題 8、關於數學知識在物理上的應用探索 9、投資人壽保險和投資銀行的分析比較 10、黃金數的廣泛應用 11、編程中的優化演算法問題 12、餘弦定理在日常生活中的應用 13、證券投資中的數學 14、環境規劃與數學 15、如何計算一份試卷的難度與區分度 16、數學的發展歷史 17、以「養老金」問題談起 18、中國體育彩票中的數學問題 19、「開放型題」及其思維對策 20、解答應用題的思維方法 21、高中數學的學習活動——解題分析 A)從嘗試到嚴謹、B)從一個到一類 22、高中數學的學習活動——解題後的反思——開發解題智慧 23、中國電腦福利彩票中的數學問題 24、各鎮中學生生活情況 25、城鎮/農村飲食構成及優化設計 26、如何安置軍事偵察衛星 27、給人與人的關系(友情)評分 28、丈量成功大廈 29、尋找人的情緒變化規律 30、如何存款最合算 31、哪家超市最便宜 32、數學中的黃金分割 33、通訊網路收費調查統計 34、數學中的最優化問題 35、水庫的來水量如何計算 36、計算器對運算能力影響 37、數學靈感的培養 38、如何提高數學課堂效率 39、二次函數圖象特點應用 40、統計月降水量 41、如何合理抽稅 42、市區車輛構成 43、計程車車費的合理定價 44、衣服的價格、質地、品牌,左右消費者觀念多少? 45、購房貸款決策問題 研究性學習的問題與課題 (來自《數學百草園》,作者葉挺彪) 《 立幾部分 》 問題1 平幾中證點共線、線共點往往較難,通常出現在競賽中。而立幾中的這類問題卻是非簡單,主要的依據僅僅是平面的基本性質:兩個平面的公共點共線。可否將平幾問題的這類問題進行升維處理。即把它轉化為立幾問世題加以解答。 問題2 用運變化的觀點對待數學問題,將會發現問題的實質及問題之間的聯系,但對於立幾中的這方面還顯得不夠,可以通過整理、收集這方面的材料加以綜合研究。 問題3 作為降維處理的一個例子:可考慮異面直線距離的幾種轉化,如轉化為線面距、點線距、面面距等。 問題4 異面直線的距離是:異面直線上兩動點的連線中最短的線段長度。所以可以用函數的觀點來解決。即建立一個兩動點的距離函數,利用求函數的最小值達到目的。 問題5 立幾中的許多問題可化歸為確定點在平面內的射影位置。如點面距、點線距、體積等。於是確定點在平面內的射影顯得非常重要,試給出一種通用方法進行確定。 問題6 作二面角的平面角是立幾中的難點,常用方法有:定義法、三垂線法、垂面法。其實質是以點定位,即當點在二面角的棱上時用定義法、當點在一個半平面內時用三垂線法、當點在空間時時用垂面法。問題似乎已解決。但對於較復雜的圖形,由於點的個數較多,以哪個點作為定位點就難以決定。試給出以線定位來作二面角的平面角的方法及步驟。 問題7 等積變換在立幾中大顯上內身手,而非等積變換是它的一般情形,作用更大,卻被人們所忽視。利用非等積變換能解決求體積、求距離、證明位置關系等問題。試利用類比平幾的相應方法探索之。 問題8 將三垂線定理進行推廣與引伸,即所謂三面角的正、餘弦定理及其特例直三面角的正、餘弦定理。以開闊眼界。 《解幾部分 》 問題9 對於數學的公式,我們應當做到三會:即正用、變用和逆用。如解幾中有許多公式如兩點距離、點到直線距離公式,定比分點、斜率公式等,考慮其逆用,就可得到構造法證題,試研究解幾中的各種公式逆用,以充實構造法證明。 問題10 我們對待任何問題(包括解決數學問題)往往用自己的審美意識去審視,以調節自己的行動計劃。在解幾中探索與搜集以美的啟迪思維的題材,加以整理與綜合研究。 問題11 整理解幾中常常被人忽視和特例而使問題的解決不完整的有素材,如用點斜式而忽視斜率存在,截距式而忽視截距為零等。 問題12 利用角參數與距離參數的相互轉化以實現命題的演變,達到以點帶面,觸類旁通的目的。 問題13 將與中點有關的問題及解決方法進行推廣,使之適用於定比分點的相應問題與方法。 問題14 研究求軌跡問題中的坐標轉移法與參數法的相互聯系。 問題15 關於斜率為 1的特殊直線的對稱問題的簡捷解法中,概括出適用范圍更加廣闊的解題策略。 問題16 解決橢圓問題不如圓容易,能否使問題化歸,即橢圓問題的圓化處理,進而研究圓錐曲線(包括其退化情形如兩條相交線,平行線等)的圓化處理。 問題17 整理與焦半徑有關的問題,並將之「純代數化」,進而研究其「純代數解法」,從中探索新方法。 問題18 把點差法解中點弦問題進行推廣,使之能解決「定比分點弦」問題。 問題19 求軌跡問題中,純粹性的簡捷判別。 問題20 在定比分點公式、弦長公式、點到直線的距離公式的推導過程中隱含著「射影思想」,擴大這思想在解幾中的地位或功能。 問題21 對平移變換的解題功能進行綜述。 問題22 與中點弦有關的圓錐曲線中的參數范圍確定問題,往往需要建立不等式進行求解,各種方法中以點在曲線內部條件為隹。試將這方法推廣到定比分點弦的情形。 《函數部分 》 問題23 空集是一切集合的子集,但在解決關集合問題時,常常忽略這一事實。試整理這方面的各類問題。 問題24 整理求定義域的規則及類型(特別是復合函數的類型)。 問題25 求函數的值域、單調區間、最小正周期等有關問題時,往往希望將自變數在一個地方出現,所以變數集中的原則就提供了解題的方向,試研究所有與變數集中原則有關的類型(如配方法、帶余除法等)。 問題26 總結求函數值域的有關方法,探索判別式法的一般情形——實根分布的條件用於求值域。 問題27 利用條件最值的幾何背景進行命題演變,與命題分類。 問題28 回顧解指數、對數方程(不等式)的化歸實質(利用外層函數的單調性去掉兩邊的外層函數的符號),我們稱之為「給函數更衣」,於是我們可以隨心所欲地將方程(不等式)進行演變。你能利用這一點編擬一些好題嗎。 問題29 探求「反函數是它本身」的所有函數。從而可解決一類含抽象函數的方程,概括所有這種方程的類型。 問題30 在原點有定義的奇函數,其隱含條件是f(0)=0,試以這一事實編擬、演變命題。 問題31 把兩面鏡子相對而立,若你處於其中,將看到許多肖像位置呈現出周期性,你能把這一事實數學化嗎?若把軸對稱改為中心對稱又怎麼結論? 問題32 對於含參數的方程(不等式),若已知解的情況確定參數的取值范圍,我們通常用函數思想及數形結合思想進行分離參數,試概括問題的類型,總結分離參數法。 問題33 改變含參數的方程(不等式)的主元與參數的地位進行命題的演變。探索換主元的功能。 《三角部分 》 問題34 數形結合是數學中的重要的思想方法之一,而單位圓中的三角函數線卻被人們所遺忘,試探它在解決三角問題中的數形結合功能。 問題35 概括sinx+cosx=a時相應x的取值范圍,及問題條件中涉及這一條件時的所隱含的結論。 問題36 整理三角代換的的類型,及其能解決的哪幾類問題。 問題37 三角最值的構造證法中,型如 ,可轉化成:1)動點(ccosx.asinx)與定點(-d,-b)連線的斜率;2)或先化為 從而轉化為動點(cosx.sinx)與定點 連線斜率等,考慮各種構造法的背景的聯系,能否以此聯系用於解決幾何問題。 問題38 一個三角公式不僅能正用,還需會逆用與變用,試將後者整理之。 問題39 概括三角恆等式證明中的一次弦式、高次弦式和切式證明的常用方法。 問題40 三角形的形狀判定中,對於含邊角混合關系的條件,利用正、餘弦定理總有兩種轉化,即轉化為角關系或邊關系,探索其中一種對另一種解法的啟示功能。 《不等式部分 》 問題41 一個數學命題若從正面入手分類情況較多,運算量較大,甚至無法求解,此時不妨考慮其反面進行求解得解集,然後再取其補集即得原命題的解。我們把它稱為「補集法」,試整理常見的類型的補集法。 問題42 概括使用均值不等式求最值問題中的「湊」的技巧 ,及拆項、添項的技巧。 問題43 觀察式子的結構特徵,如分析式子中的指數、系數等啟示證題的的方向。 問題44 探求一此著名不等式(如柯西不等式、排序不等式等)和多種證法,尋找其背景以加深對不等式的理解。 問題45 整理常用的一此代換(三角代換、均值代換等),探索它在命題轉化中的功能。 問題46 考慮均值不等式的變用,及改變之後的不等式的背景意義。 問題47 分母為多項式的輪換對稱不等式,由於難以參於通分,證明往往較難。探求一種代換,將分母為多項式的轉化為單項式。 問題48 探索絕對值不等式和物理模擬法 如果還有什麼相關的課題,請各位同行提出。
採納哦
『叄』 求高中數學研究性小課題一篇
高中數學研究性學習課題集錦 一、課本知識延伸型 1、空集是一切集合的子集,但在解決關集合問題時,常常忽略這一事實。試整理這方面的 各類問題。 2、整理求定義域的規則及類型(特別是復合函數的類型) 。 3、求函數的值域、單調區間、最小正周期等有關問題時,往往希望將自變數在一個地方出 現,所以變數集中的原則就提供了解題的方向,試研究所有與變數集中原則有關的類型(如 配方法、帶余除法等) 。 4、 總結求函數值域的有關方法, 探索判別式法的一般情形——實根分布的條件用於求值域。 5、利用條件最值的幾何背景進行命題演變,與命題分類。 6、回顧解指數、對數方程(不等式)的化歸實質(利用外層函數的單調性去掉兩邊的外層 函數的符號) ,我們稱之為「給函數更衣」 ,於是我們可以隨心所欲地將方程(不等式)進行 演變。你能利用這一點編擬一些好題嗎。 7、探求「反函數是它本身」的所有函數。從而可解決一類含抽象函數的方程,概括所有這 種方程的類型。 8、在原點有定義的奇函數,其隱含條件是 f(0)=0,試以這一事實編擬、演變命題。 9、把兩面鏡子相對而立,若你處於其中,將看到許多肖像位置呈現出周期性,你能把這一 事實數學化嗎?若把軸對稱改為中心對稱又怎麼結論? 10、對於含參數的方程(不等式) ,若已知解的情況確定參數的取值范圍,我們通常用函數 思想及數形結合思想進行分離參數,試概括問題的類型,總結分離參數法。 11、 改變含參數的方程 (不等式) 的主元與參數的地位進行命題的演變。 探索換主元的功能。 12、數形結合是數學中的重要的思想方法之一,而單位圓中的三角函數線卻被人們所遺忘, 試探它在解決三角問題中的數形結合功能。 13、整理三角代換的的類型,及其能解決的哪幾類問題。 14、一個三角公式不僅能正用,還需會逆用與變用,試將後者整理之。 15、三角形的形狀判定中,對於含邊角混合關系的條件,利用正、餘弦定理總有兩種轉化, 即轉化為角關系或邊關系,探索其中一種對另一種解法的啟示功能。 16、一個數學命題若從正面入手分類情況較多,運算量較大,甚至無法求解,此時不妨考慮 其反面進行求解得解集,然後再取其補集即得原命題的解。我們把它稱為「補集法」 ,試整 理常見的類型的補集法。 17、概括使用均值不等式求最值問題中的「湊」的技巧 ,及拆項、添項的技巧。 18、觀察式子的結構特徵,如分析式子中的指數、系數等啟示證題的的方向。 19、探求一些著名不等式(如柯西不等式、排序不等式等)和多種證法,尋找其背景以加深 對不等式的理解。 20、整理常用的一些代換(三角代換、均值代換等) ,探索它在命題轉化中的功能。 21、考慮均值不等式的變換,及改變之後的不等式的背景意義。 22、分母為多項式的輪換對稱不等式,由於難以參於通分,證明往往較難。探求一種代換, 將分母為多項式的轉化為單項式。 23、關於數學知識在物理上的應用探索 24、對於數學的公式,我們應當做到三會:即正用、變用和逆用。如解幾中有許多公式如兩 點距離、點到直線距離公式,定比分點、斜率公式等,考慮其逆用,就可得到構造法證題, 試研究解幾中的各種公式逆用,以充實構造法證明。 25、我們對待任何問題(包括解決數學問題)往往用自己的審美意識去審視,以調節自己的 行動計劃。在解幾中探索與搜集以美的啟迪思維的題材,加以整理與綜合研究。 26、 整理解幾中常常被人忽視和特例而使問題的解決不完整的有素材, 如用點斜式而忽視斜 率存在,截距式而忽視截距為零等。 27、 利用角參數與距離參數的相互轉化以實現命題的演變, 達到以點帶面, 觸類旁通的目的。 28、研究求軌跡問題中的坐標轉移法與參數法的相互聯系。 29、關於斜率為 1 的特殊直線的對稱問題的簡捷解法中,概括出適用范圍更加廣闊的解題 策略。 30、解決橢圓問題不如圓容易,能否使問題化歸,即橢圓問題的圓化處理,進而研究圓錐曲 線(包括其退化情形如兩條相交線,平行線等)的圓化處理。 31、整理與焦半徑有關的問題,並將之「純代數化」 ,進而研究其「純代數解法」 ,從中探索 新方法。 32、把點差法解中點弦問題進行推廣,使之能解決「定比分點弦」問題。 33、在定比分點公式、弦長公式、點到直線的距離公式的推導過程中隱含著「射影思想」 , 擴大這思想在解幾中的地位或功能。 34、與中點弦有關的圓錐曲線中的參數范圍確定問題,往往需要建立不等式進行求解,各種 方法中以點在曲線內部條件為隹。試將這方法推廣到定比分點弦的情形。 35、平幾中證點共線、線共點往往較難,通常出現在競賽中。而立幾中的這類問題卻是非簡 單,主要的依據僅僅是平面的基本性質:兩個平面的公共點共線。可否將平幾問題的這類問 題進行升維處理。即把它轉化為立幾問世題加以解答。 36、用運變化的觀點對待數學問題,將會發現問題的實質及問題之間的聯系,但對於立幾中 的這方面還顯得不夠,可以通過整理、收集這方面的材料加以綜合研究。 37、 作為降維處理的一個例子: 可考慮異面直線距離的幾種轉化, 如轉化為線面距、 點線距、 面面距等。 38、異面直線的距離是:異面直線上兩動點的連線中最短的線段長度。所以可以用函數的觀 點來解決。即建立一個兩動點的距離函數,利用求函數的最小值達到目的。 39、立幾中的許多問題可化歸為確定點在平面內的射影位置。如點面距、點線距、體積等。 於是確定點在平面內的射影顯得非常重要,試給出一種通用方法進行確定。 40、等積變換在立幾中大顯上內身手,而非等積變換是它的一般情形,作用更大,卻被人們 所忽視。利用非等積變換能解決求體積、求距離、證明位置關系等問題。試利用類比平幾的 相應方法探索之。 二、生活應用型(需要學生自己動手去有關部門搜集和整理原始資料) 1、銀行存款利息和利稅的調查 2、購房貸款決策問題 3、有關房子粉刷的預算 4、關於數學知識在物理上的應用探索 5、投資人壽保險和投資銀行的分析比較 6、編程中的優化演算法問題 7、餘弦定理在日常生活中的應用 8、證券投資中的數學 9、環境規劃與數學 10、如何計算一份試卷的難度與區分度 11、中國體育彩票中的數學問題 12、 「開放型題」及其思維對策 13、中國電腦福利彩票中的數學問題 14、城鎮/農村飲食構成及優化設計 15、如何安置軍事偵察衛星 16、如何存款最合算 17、哪家超市最便宜 18、數學中的黃金分割 29、通訊網路收費調查統計 20、數學中的最優化問題 21、水庫的來水量如何計算 22、計算器對運算能力影響 23、統計銅陵市月降水量 24、計程車車費的合理定價 25、購房貸款決策問題 26、設計未來的中學數學課堂 27、電視機熒屏曲線的擬合函數的分析 28、用計算機軟體編制數學游戲 29、製作一個數學的練習與檢查反饋軟體 30、製作較為復雜的數據統計表格與分析軟體 31、製作一個中學生數學網站 32、如何計算一份試卷的難度與區分度 33、多媒體輔助教學在數學教學中的作用調查 34、零件供應站(最省問題) 35、拍照取景角最大問題 36、當地耕地而積的變化情況,預測今後的耕地而積 37、衣服的價格、質地、品牌,左右消費者觀念多少? 38、如何提高數學課堂效率 39、數學的發展歷史 40、「開放型題」及其思維對策
『肆』 適合高中生的數學研究課題
數學建模是好東西,可以研究一下,或者去研究數論,這是純粹數學,非應用數學
『伍』 要搞一個有關高中數學的課題
數學研究性學習課題
1、銀行存款利息和利稅的調查
2、氣象學中的數學應用問題
3、如何開發解題智慧
4、多面體歐拉定理的發現
5、購房貸款決策問題
6、有關房子粉刷的預算
7、日常生活中的悖論問題
8、關於數學知識在物理上的應用探索
9、投資人壽保險和投資銀行的分析比較
10、黃金數的廣泛應用
11、編程中的優化演算法問題
12、餘弦定理在日常生活中的應用
13、證券投資中的數學
14、環境規劃與數學
15、如何計算一份試卷的難度與區分度
16、數學的發展歷史
17、以「養老金」問題談起
18、中國體育彩票中的數學問題
19、「開放型題」及其思維對策
20、解答應用題的思維方法
21、高中數學的學習活動——解題分析 A)從嘗試到嚴謹、B)從一個到一類
22、高中數學的學習活動——解題後的反思——開發解題智慧
23、中國電腦福利彩票中的數學問題
24、各鎮中學生生活情況
25、城鎮/農村飲食構成及優化設計
26、如何安置軍事偵察衛星
27、給人與人的關系(友情)評分
28、丈量成功大廈
29、尋找人的情緒變化規律
30、如何存款最合算
31、哪家超市最便宜
32、數學中的黃金分割
33、通訊網路收費調查統計
34、數學中的最優化問題
35、水庫的來水量如何計算
36、計算器對運算能力影響
37、數學靈感的培養
38、如何提高數學課堂效率
39、二次函數圖象特點應用
40、統計月降水量
41、如何合理抽稅
42、市區車輛構成
43、計程車車費的合理定價
44、衣服的價格、質地、品牌,左右消費者觀念多少?
45、購房貸款決策問題
研究性學習的問題與課題 (來自《數學百草園》,作者葉挺彪)
《 立幾部分 》
問題1
平幾中證點共線、線共點往往較難,通常出現在競賽中。而立幾中的這類問題卻是非簡單,主要的依據僅僅是平面的基本性質:兩個平面的公共點共線。可否將平幾問題的這類問題進行升維處理。即把它轉化為立幾問世題加以解答。
問題2
用運變化的觀點對待數學問題,將會發現問題的實質及問題之間的聯系,但對於立幾中的這方面還顯得不夠,可以通過整理、收集這方面的材料加以綜合研究。
問題3 作為降維處理的一個例子:可考慮異面直線距離的幾種轉化,如轉化為線面距、點線距、面面距等。
問題4
異面直線的距離是:異面直線上兩動點的連線中最短的線段長度。所以可以用函數的觀點來解決。即建立一個兩動點的距離函數,利用求函數的最小值達到目的。
問題5
立幾中的許多問題可化歸為確定點在平面內的射影位置。如點面距、點線距、體積等。於是確定點在平面內的射影顯得非常重要,試給出一種通用方法進行確定。
問題6
作二面角的平面角是立幾中的難點,常用方法有:定義法、三垂線法、垂面法。其實質是以點定位,即當點在二面角的棱上時用定義法、當點在一個半平面內時用三垂線法、當點在空間時時用垂面法。問題似乎已解決。但對於較復雜的圖形,由於點的個數較多,以哪個點作為定位點就難以決定。試給出以線定位來作二面角的平面角的方法及步驟。
問題7
等積變換在立幾中大顯上內身手,而非等積變換是它的一般情形,作用更大,卻被人們所忽視。利用非等積變換能解決求體積、求距離、證明位置關系等問題。試利用類比平幾的相應方法探索之。
問題8 將三垂線定理進行推廣與引伸,即所謂三面角的正、餘弦定理及其特例直三面角的正、餘弦定理。以開闊眼界。
《解幾部分 》
問題9
對於數學的公式,我們應當做到三會:即正用、變用和逆用。如解幾中有許多公式如兩點距離、點到直線距離公式,定比分點、斜率公式等,考慮其逆用,就可得到構造法證題,試研究解幾中的各種公式逆用,以充實構造法證明。
問題10
我們對待任何問題(包括解決數學問題)往往用自己的審美意識去審視,以調節自己的行動計劃。在解幾中探索與搜集以美的啟迪思維的題材,加以整理與綜合研究。
問題11 整理解幾中常常被人忽視和特例而使問題的解決不完整的有素材,如用點斜式而忽視斜率存在,截距式而忽視截距為零等。
問題12 利用角參數與距離參數的相互轉化以實現命題的演變,達到以點帶面,觸類旁通的目的。
問題13 將與中點有關的問題及解決方法進行推廣,使之適用於定比分點的相應問題與方法。
問題14 研究求軌跡問題中的坐標轉移法與參數法的相互聯系。
問題15 關於斜率為 1的特殊直線的對稱問題的簡捷解法中,概括出適用范圍更加廣闊的解題策略。
問題16
解決橢圓問題不如圓容易,能否使問題化歸,即橢圓問題的圓化處理,進而研究圓錐曲線(包括其退化情形如兩條相交線,平行線等)的圓化處理。
問題17 整理與焦半徑有關的問題,並將之「純代數化」,進而研究其「純代數解法」,從中探索新方法。
問題18 把點差法解中點弦問題進行推廣,使之能解決「定比分點弦」問題。
問題19 求軌跡問題中,純粹性的簡捷判別。
問題20 在定比分點公式、弦長公式、點到直線的距離公式的推導過程中隱含著「射影思想」,擴大這思想在解幾中的地位或功能。
問題21 對平移變換的解題功能進行綜述。
問題22
與中點弦有關的圓錐曲線中的參數范圍確定問題,往往需要建立不等式進行求解,各種方法中以點在曲線內部條件為隹。試將這方法推廣到定比分點弦的情形。
《函數部分 》
問題23 空集是一切集合的子集,但在解決關集合問題時,常常忽略這一事實。試整理這方面的各類問題。
問題24 整理求定義域的規則及類型(特別是復合函數的類型)。
問題25
求函數的值域、單調區間、最小正周期等有關問題時,往往希望將自變數在一個地方出現,所以變數集中的原則就提供了解題的方向,試研究所有與變數集中原則有關的類型(如配方法、帶余除法等)。
問題26 總結求函數值域的有關方法,探索判別式法的一般情形——實根分布的條件用於求值域。
問題27 利用條件最值的幾何背景進行命題演變,與命題分類。
問題28
回顧解指數、對數方程(不等式)的化歸實質(利用外層函數的單調性去掉兩邊的外層函數的符號),我們稱之為「給函數更衣」,於是我們可以隨心所欲地將方程(不等式)進行演變。你能利用這一點編擬一些好題嗎。
問題29 探求「反函數是它本身」的所有函數。從而可解決一類含抽象函數的方程,概括所有這種方程的類型。
問題30 在原點有定義的奇函數,其隱含條件是f(0)=0,試以這一事實編擬、演變命題。
問題31 把兩面鏡子相對而立,若你處於其中,將看到許多肖像位置呈現出周期性,你能把這一事實數學化嗎?若把軸對稱改為中心對稱又怎麼結論?
問題32
對於含參數的方程(不等式),若已知解的情況確定參數的取值范圍,我們通常用函數思想及數形結合思想進行分離參數,試概括問題的類型,總結分離參數法。
問題33 改變含參數的方程(不等式)的主元與參數的地位進行命題的演變。探索換主元的功能。
《三角部分 》
問題34 數形結合是數學中的重要的思想方法之一,而單位圓中的三角函數線卻被人們所遺忘,試探它在解決三角問題中的數形結合功能。
問題35 概括sinx+cosx=a時相應x的取值范圍,及問題條件中涉及這一條件時的所隱含的結論。
問題36 整理三角代換的的類型,及其能解決的哪幾類問題。
問題37 三角最值的構造證法中,型如 ,可轉化成:1)動點(ccosx.asinx)與定點(-d,-b)連線的斜率;2)或先化為
從而轉化為動點(cosx.sinx)與定點 連線斜率等,考慮各種構造法的背景的聯系,能否以此聯系用於解決幾何問題。
問題38 一個三角公式不僅能正用,還需會逆用與變用,試將後者整理之。
問題39 概括三角恆等式證明中的一次弦式、高次弦式和切式證明的常用方法。
問題40
三角形的形狀判定中,對於含邊角混合關系的條件,利用正、餘弦定理總有兩種轉化,即轉化為角關系或邊關系,探索其中一種對另一種解法的啟示功能。
《不等式部分 》
問題41
一個數學命題若從正面入手分類情況較多,運算量較大,甚至無法求解,此時不妨考慮其反面進行求解得解集,然後再取其補集即得原命題的解。我們把它稱為「補集法」,試整理常見的類型的補集法。
問題42 概括使用均值不等式求最值問題中的「湊」的技巧 ,及拆項、添項的技巧。
問題43 觀察式子的結構特徵,如分析式子中的指數、系數等啟示證題的的方向。
問題44 探求一此著名不等式(如柯西不等式、排序不等式等)和多種證法,尋找其背景以加深對不等式的理解。
問題45 整理常用的一此代換(三角代換、均值代換等),探索它在命題轉化中的功能。
問題46 考慮均值不等式的變用,及改變之後的不等式的背景意義。
問題47 分母為多項式的輪換對稱不等式,由於難以參於通分,證明往往較難。探求一種代換,將分母為多項式的轉化為單項式。
問題48 探索絕對值不等式和物理模擬法
如果還有什麼相關的課題,請各位同行提出
『陸』 求高中數學研究課題
高中數學研究性學習課題選題參考
作者:德化一中數學組
數學研究性學習課題
1、銀行存款利息和利稅的調查
2、氣象學中的數學應用問題
3、如何開發解題智慧
4、多面體歐拉定理的發現
5、購房貸款決策問題
6、有關房子粉刷的預算
7、日常生活中的悖論問題
8、關於數學知識在物理上的應用探索
9、投資人壽保險和投資銀行的分析比較
10、黃金數的廣泛應用
11、編程中的優化演算法問題
12、餘弦定理在日常生活中的應用
13、證券投資中的數學
14、環境規劃與數學
15、如何計算一份試卷的難度與區分度
16、數學的發展歷史
17、以「養老金」問題談起
18、中國體育彩票中的數學問題
19、「開放型題」及其思維對策
20、解答應用題的思維方法
21、高中數學的學習活動——解題分析 A)從嘗試到嚴謹、B)從一個到一類
22、高中數學的學習活動——解題後的反思——開發解題智慧
23、中國電腦福利彩票中的數學問題
24、各鎮中學生生活情況
25、城鎮/農村飲食構成及優化設計
26、如何安置軍事偵察衛星
27、給人與人的關系(友情)評分
28、丈量成功大廈
29、尋找人的情緒變化規律
30、如何存款最合算
31、哪家超市最便宜
32、數學中的黃金分割
33、通訊網路收費調查統計
34、數學中的最優化問題
35、水庫的來水量如何計算
36、計算器對運算能力影響
37、數學靈感的培養
38、如何提高數學課堂效率
39、二次函數圖象特點應用
40、統計月降水量
41、如何合理抽稅
42、市區車輛構成
43、計程車車費的合理定價
44、衣服的價格、質地、品牌,左右消費者觀念多少?
45、購房貸款決策問題
研究性學習的問題與課題 (來自《數學百草園》,作者葉挺彪)
《 立幾部分 》
問題1
平幾中證點共線、線共點往往較難,通常出現在競賽中。而立幾中的這類問題卻是非簡單,主要的依據僅僅是平面的基本性質:兩個平面的公共點共線。可否將平幾問題的這類問題進行升維處理。即把它轉化為立幾問世題加以解答。
問題2
用運變化的觀點對待數學問題,將會發現問題的實質及問題之間的聯系,但對於立幾中的這方面還顯得不夠,可以通過整理、收集這方面的材料加以綜合研究。
問題3 作為降維處理的一個例子:可考慮異面直線距離的幾種轉化,如轉化為線面距、點線距、面面距等。
問題4
異面直線的距離是:異面直線上兩動點的連線中最短的線段長度。所以可以用函數的觀點來解決。即建立一個兩動點的距離函數,利用求函數的最小值達到目的。
問題5
立幾中的許多問題可化歸為確定點在平面內的射影位置。如點面距、點線距、體積等。於是確定點在平面內的射影顯得非常重要,試給出一種通用方法進行確定。
問題6
作二面角的平面角是立幾中的難點,常用方法有:定義法、三垂線法、垂面法。其實質是以點定位,即當點在二面角的棱上時用定義法、當點在一個半平面內時用三垂線法、當點在空間時時用垂面法。問題似乎已解決。但對於較復雜的圖形,由於點的個數較多,以哪個點作為定位點就難以決定。試給出以線定位來作二面角的平面角的方法及步驟。
問題7
等積變換在立幾中大顯上內身手,而非等積變換是它的一般情形,作用更大,卻被人們所忽視。利用非等積變換能解決求體積、求距離、證明位置關系等問題。試利用類比平幾的相應方法探索之。
問題8 將三垂線定理進行推廣與引伸,即所謂三面角的正、餘弦定理及其特例直三面角的正、餘弦定理。以開闊眼界。
《解幾部分 》
問題9
對於數學的公式,我們應當做到三會:即正用、變用和逆用。如解幾中有許多公式如兩點距離、點到直線距離公式,定比分點、斜率公式等,考慮其逆用,就可得到構造法證題,試研究解幾中的各種公式逆用,以充實構造法證明。
問題10
我們對待任何問題(包括解決數學問題)往往用自己的審美意識去審視,以調節自己的行動計劃。在解幾中探索與搜集以美的啟迪思維的題材,加以整理與綜合研究。
問題11 整理解幾中常常被人忽視和特例而使問題的解決不完整的有素材,如用點斜式而忽視斜率存在,截距式而忽視截距為零等。
問題12 利用角參數與距離參數的相互轉化以實現命題的演變,達到以點帶面,觸類旁通的目的。
問題13 將與中點有關的問題及解決方法進行推廣,使之適用於定比分點的相應問題與方法。
問題14 研究求軌跡問題中的坐標轉移法與參數法的相互聯系。
問題15 關於斜率為 1的特殊直線的對稱問題的簡捷解法中,概括出適用范圍更加廣闊的解題策略。
問題16
解決橢圓問題不如圓容易,能否使問題化歸,即橢圓問題的圓化處理,進而研究圓錐曲線(包括其退化情形如兩條相交線,平行線等)的圓化處理。
問題17 整理與焦半徑有關的問題,並將之「純代數化」,進而研究其「純代數解法」,從中探索新方法。
問題18 把點差法解中點弦問題進行推廣,使之能解決「定比分點弦」問題。
問題19 求軌跡問題中,純粹性的簡捷判別。
問題20 在定比分點公式、弦長公式、點到直線的距離公式的推導過程中隱含著「射影思想」,擴大這思想在解幾中的地位或功能。
問題21 對平移變換的解題功能進行綜述。
問題22
與中點弦有關的圓錐曲線中的參數范圍確定問題,往往需要建立不等式進行求解,各種方法中以點在曲線內部條件為隹。試將這方法推廣到定比分點弦的情形。
《函數部分 》
問題23 空集是一切集合的子集,但在解決關集合問題時,常常忽略這一事實。試整理這方面的各類問題。
問題24 整理求定義域的規則及類型(特別是復合函數的類型)。
問題25
求函數的值域、單調區間、最小正周期等有關問題時,往往希望將自變數在一個地方出現,所以變數集中的原則就提供了解題的方向,試研究所有與變數集中原則有關的類型(如配方法、帶余除法等)。
問題26 總結求函數值域的有關方法,探索判別式法的一般情形——實根分布的條件用於求值域。
問題27 利用條件最值的幾何背景進行命題演變,與命題分類。
問題28
回顧解指數、對數方程(不等式)的化歸實質(利用外層函數的單調性去掉兩邊的外層函數的符號),我們稱之為「給函數更衣」,於是我們可以隨心所欲地將方程(不等式)進行演變。你能利用這一點編擬一些好題嗎。
問題29 探求「反函數是它本身」的所有函數。從而可解決一類含抽象函數的方程,概括所有這種方程的類型。
問題30 在原點有定義的奇函數,其隱含條件是f(0)=0,試以這一事實編擬、演變命題。
問題31 把兩面鏡子相對而立,若你處於其中,將看到許多肖像位置呈現出周期性,你能把這一事實數學化嗎?若把軸對稱改為中心對稱又怎麼結論?
問題32
對於含參數的方程(不等式),若已知解的情況確定參數的取值范圍,我們通常用函數思想及數形結合思想進行分離參數,試概括問題的類型,總結分離參數法。
問題33 改變含參數的方程(不等式)的主元與參數的地位進行命題的演變。探索換主元的功能。
《三角部分 》
問題34 數形結合是數學中的重要的思想方法之一,而單位圓中的三角函數線卻被人們所遺忘,試探它在解決三角問題中的數形結合功能。
問題35 概括sinx+cosx=a時相應x的取值范圍,及問題條件中涉及這一條件時的所隱含的結論。
問題36 整理三角代換的的類型,及其能解決的哪幾類問題。
問題37 三角最值的構造證法中,型如 ,可轉化成:1)動點(ccosx.asinx)與定點(-d,-b)連線的斜率;2)或先化為
從而轉化為動點(cosx.sinx)與定點 連線斜率等,考慮各種構造法的背景的聯系,能否以此聯系用於解決幾何問題。
問題38 一個三角公式不僅能正用,還需會逆用與變用,試將後者整理之。
問題39 概括三角恆等式證明中的一次弦式、高次弦式和切式證明的常用方法。
問題40
三角形的形狀判定中,對於含邊角混合關系的條件,利用正、餘弦定理總有兩種轉化,即轉化為角關系或邊關系,探索其中一種對另一種解法的啟示功能。
《不等式部分 》
問題41
一個數學命題若從正面入手分類情況較多,運算量較大,甚至無法求解,此時不妨考慮其反面進行求解得解集,然後再取其補集即得原命題的解。我們把它稱為「補集法」,試整理常見的類型的補集法。
問題42 概括使用均值不等式求最值問題中的「湊」的技巧 ,及拆項、添項的技巧。
問題43 觀察式子的結構特徵,如分析式子中的指數、系數等啟示證題的的方向。
問題44 探求一此著名不等式(如柯西不等式、排序不等式等)和多種證法,尋找其背景以加深對不等式的理解。
問題45 整理常用的一此代換(三角代換、均值代換等),探索它在命題轉化中的功能。
問題46 考慮均值不等式的變用,及改變之後的不等式的背景意義。
問題47 分母為多項式的輪換對稱不等式,由於難以參於通分,證明往往較難。探求一種代換,將分母為多項式的轉化為單項式。
問題48 探索絕對值不等式和物理模擬法
如果還有什麼相關的課題,請各位同行提出。
『柒』 要搞一個有關高中數學的課題但不知道哪些
怎樣學好高中數學?首先要摘要答題技巧
現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些類型?
高中數學試卷
怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.
『捌』 高中數學小課題研究什麼比較好呢,跪求建議,最好加Q791247780聊~
研究的課題要有神秘感覺。(課題氣氛)
簡單的吧 1+1為什麼=2.你能證明出來你這輩子不用愁。(研究問題)
當年徐遲的一篇報告文學,中國人知道了陳景潤和哥德巴赫猜想。 那麼,什麼是哥德巴赫猜想呢? 哥德巴赫是德國一位中學教師,也是一位著名的數學家,生於1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發現,每個不小於6的偶數都是兩個素數(只能被1和它本身整除的數)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫寫信給當時的大數學家歐拉,提出了以下的猜想: (a)任何一個≥6之偶數,都可以表示成兩個質數之和。 (b)任何一個≥9之奇數,都可以表示成不超過三個的質數之和。 這就是著名的哥德巴赫猜想。歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的注意。從哥德巴赫提出這個猜想至今,許多數學家都不斷努力想攻克它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人對33×10的8次方以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但嚴格的數學證明尚待數學家的努力。 從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的"明珠"。 人們對哥德巴赫猜想難題的熱情,歷經兩百多年而不衰。世界上許許多多的數學工作者,殫精竭慮,費盡心機,然而至今仍不得其解。材料。