數學小課題研究生活中的圓
1. 請你舉一個圓在生活中應用的實際例子,提出數學問題並解答
因為在來同樣周長繩子圍成的圖形中自,圓形圍出的面積最大,所以在日常生活中,很多物品被製成圓形,如碗盤盆桶等,既節省材料,又美觀大方。
半徑為兀分之4的圓形,邊長為2的正方形,長3寬1的長方形,它們的周長都是8,但面積各是多少呢?圓形面積為兀分之16,大於正方形面積4,更大於長方形面積3。
2. 關於生活中的圓的數學日記!400字以上!跪求。。。。。。急!!!!!!!!!!!!!!!!
什麼叫做生活中的圓,那就是在生活中有哪些關於圓的周長、圓的面積還有圓的對稱軸之類的東西,也就是圓的知識在生活中的應用。
在我們的現實生活中有許多地方要應用到圓的周長,只要你認真觀察,就肯定能發現的,雖然我不知道大家知道多少關於圓的周長的東西,今天我就把我所知的一點皮毛告訴大家,據我所知,車輪走一圈的路程就是這個圓的周長;時鍾的分針針尖走過的路線是鍾面的周長;圓形餐桌圍的花布邊的長度也是餐桌面的周長;人們經常戴在手上的手鐲也含有圓的周長的知識……真的是太多太多了,我只說了一點剩下的就由你這位高手去觀察了。
圓面積其實也很簡單,只要你會觀察,眼睛亮一點就可以了。圓桌的大小也就是圓桌的面積;時針掃過的面的大小也就是這個鍾的面積;還有就是可能大家很少見,那就是用繩子拴住牛吃草,求牛吃草的最大范圍,也就是求圓的面積,……。這是我所歸納的。
還有,圓有無數條對稱軸,切記!
我知道的就這些,不算多,所謂:「天外有山,人外有人」請指教。
其實生活中有許多數學,看你仔細不仔細了。
僅供參考,祝你好運!
3. 數學小論文 尋找生活中的圓 300字
人們在生活中經常會遇到各種相反意義的量。比如,在記帳時有餘有虧;在計算糧倉回存米時,有時要記進答糧食,有時要記出糧食。為了方便,人們就考慮了相反意義的數來表示。於是人們引入了正負數這個概念,把余錢進糧食記為正,把虧錢、出糧食記為負。可見正負數是生產實踐中產生的。
據史料記載,早在兩千多年前,我國就有了正負數的概念,掌握了正負數的運演算法則。人們計算的時候用一些小竹棍擺出各種數字來進行計算。比如,356擺成|||
,3056擺成等等。這些小竹棍叫做「算籌」算籌也可以用骨頭和象牙來製作。
4. 小學數學上圓的知識怎麼引出課題
舉例說,生活中哪些物體是圓形的,哪些是利用圓形的,哪些人研究過圓等等,學生喜歡聽故事。
5. 求課題:生活中的數學
一.教材分析
主旨:1、在生活中發現,在生活中學習,為生活服務。
2、滲透思想。
《數學課程課標》指出:義務教育階段的數學課程要使學生「人人學有價值的數學」。對學生來說,什麼是有價值的數學呢?我認為,「數學價值」主要體現在學生現在和未來社會生活中對所學知識的應用。
在《空間與圖形》中有關立體圖形的一些內容,在我們的生活中有著廣泛地應用。作為一節復習課,在教學內容的設計上,我不僅重視學生對概念、公式的把握,同時還要讓學生在解決問題的過程中,認識到一般規律和具體問題的關系,今後能靈活地應用所學知識解決實際問題。
(1)在生活中發現問題。
數學源於生活,作為教學活動的組織者、引導者與合作者,我們有責任把學生引入豐富多彩的現實生活,帶引他們去發現數學、捕捉數學。
(2)在生活中學習。
《數學課程課標》還指出:「學生的數學學習內容應當是現實的、有意義的、富有挑戰性的……」所以數學規律的發現和應用不能只是簡單的呈現,而需要調動學生的多種感官參與到數學活動去,並在活動的過程中體驗數學問題的探索性和挑戰性,感受數學思考過程帶給我們的樂趣。
(3)為生活服務。
數學源於生活,終將服務於生活。數學知識的學習與應用如果脫離了生活實際就會失去其本身所具有的強大的社會生命力。在設計這節復習課時,我從現實生活中去尋找可開發利用的學習資源,利用「火柴盒」復習立體幾何的有關知識。之所以選擇「火柴盒」作為研究的素材,一是因為學生對它既熟悉又陌生,二是其中蘊涵著許多數學問題,三是利用它可以進行環境保護的思想教育,於是我把課題定為《生活中的數學》。
總之,通過本節課的學習,使學生再一次感受到生活中有許多值得我們去探究的數學問題,只要我們做一個有心人,主動地去發現信息、運用信息,就會發現我們生活中處處有數學。
二.學生分析
我校地處海淀區的二里溝試驗學區,學生接觸的教材是全新的,學生所受到的教育的理念也是全新的,隨著互連網技術的逐漸普及和學生學習方法的不斷積累,學生學習的渠道也是多方位的,多數學生的思維是靈活的、敏捷的,已經能在教師指導下,從日常生活中發現並提出簡單的數學問題,了解同一問題可以有不同的解決辦法,有與同伴合作解決問題的體驗,並能夠表達解決問題的大致過程和結果,能探索出解決問題的有效方法,並試圖尋找其他方法。但是,由於學生個體的差異,使得已有知識基礎、探索新知的快慢程度等也會出現差異。因此,教學內容的安排,教學過程的設計,教學方式的選擇,以及教學手段的使用都要從學生的需要出發。
本節課我選擇火柴盒作為貫穿全課的唯一的學慣用具,而且人手一個,就是要讓學生在短短的40分鍾內,充分了解它的構造,以及由它而產生的許多奇妙的數學問題,從而激發學生學習數學的興趣。
作為六年級即將畢業的學生,對已學的幾何公式的掌握應該不存在很大的問題,但如何能利用學過的知識靈活地解決問題,學生的水平是參差不齊的,有些學生會感到很困難,因此教師要在平時的教學中,有意識地訓練學生解決問題的能力,並充分發揮優等生的作用,發揮小組的作用,使所有的學生都能在原有的知識基礎上得到提高。
三.教學目標
教學目標:
1.通過進一步認識火柴盒的構造,能從數學的角度提出一些數學問題,並能說出用哪些相關的數學知識進行解答。
2.培養學生學數學、用數學的意識,以及在解決數學問題的過程中敢於探索、敢於挑戰的精神。
3.通過教學對學生進行環境保護的教育,滲透EPD的教育思想,即環境保護和可持續性發展。
教學重點:計算火柴盒的實際用料面積。
教學難點:
1.多種方法計算火柴盒的實際用料面積。
2.火柴盒的包裝問題。
教具准備:課件、火柴盒。
四.教學過程:
(一)談話引入。 5分
同學們手裡都有一個火柴盒,你見過嗎?今天我們就利用它來研究一些數學問題。
問:從數學的角度,我們都可以提哪些問題呢?解決這些問題要用到我們學過的哪些知識呢?
老師提出要求:
(1) 先自己想一想。
(2) 小聲和同組的同學交流一下,看看哪個組說的最充分。
(3) 全班交流。
涉及到的問題:
(1) 求火柴盒的表面積。
利用的知識:長方體的表面積:S=2(ab+ah+bh)
(2) 求火柴盒的體積(容積)。
師:如果壁厚忽略不計的話,可以看成解決的是同一個問題。
利用的知識:長方體的體積:V=abh
(3) 求佔地面積。
問:怎麼放佔地面積最大?怎麼放佔地面積最小?
師:佔地兒的大小與火柴盒擺放的方法有關。
(4) 求實際用料面積(用了多少紙)。
問:求幾個面的面積?(9個)
哪9個?(外盒4個面的用料面積+內盒5個面的用料面積)
(點評:通過進一步認識火柴盒的構造,能從數學的角度提出一些數學問題,並能說出用哪些相關的數學知識進行解答。)
(二)求實際用料面積。 10分
師:剛才同學們提出了一個很有研究價值的問題,求實際用料面積。
1.先自己做,至少用兩種方法。
(學生自己測量需要的數據:a=4.5cm b=3.5cm h=1cm)
師:沒有數據,立刻知道去測量,這種意識很好。
2.小組交流,看哪個組想出的方法最多。
3.全班交流。
(1) 外盒的用料面積加上內盒的用料面積。
(2) 按兩個表面積算,減去多算的。
(3) 按一個表面積算,加上少算的。
(4) 數一數大面有幾個,中面有幾個,小面有幾個,最後把它們的面積加起來。
(5) 其它方法。
4. 教師小結。
問:你最喜歡哪種方法?
看來,同學們都有自己喜歡的方法,你覺得哪種方法最好你就使用哪種方法,同時也可以借鑒其他人的方法。
(點評:有效的數學活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。)
(三)火柴包裝問題。 10分
1.師:火柴在出廠前是要進行包裝的。如果要把兩盒火柴包裝在一起,都可以怎樣包裝?你准備怎麼包?說說理由。
2.計算把兩盒火柴包裝在一起,至少需要多少包裝紙?
(1)學生獨立計算
(2)匯報計算方法
方法一:兩個表面積減去兩個大面的面積
方法二:直接利用公式計算新拼成的長方體的表面積
方法三:其它方法
3.問:想知道火柴盒廠是幾盒作為一個包裝的嗎?(一般是10盒)怎麼包裝最省紙?課下你們可以繼續研究。
(點評:這一內容的安排,可以考察學生是否會運用學過的知識靈活地解決問題)
(四)求火柴盒的體積(容積)。 12分
問:你們知道製造火柴的主要原料是什麼?(木材、磷)
如果要把這個火柴盒裝滿(縫隙忽略不計),大約需要多少木材?(求的是火柴盒的容積。)
板書:4.5×3.5×1=15.75(cm3)
師:在我們看來,製造一盒火柴需要的木材並不多,但是,當你看到以下這些數據時,我想你會驚訝的。
電腦出示幻燈片(森林背景)
據資料記載①:火柴作為普及型引火用具在我國已有150年的歷史。
師:近年來由於汽體打火機的沖擊,火柴的用量大減。但目前國際市場已禁止生產和銷售汽體打火機,我國也限制汽體打火機的生產和銷售,因此火柴作為普通引火用具在國內仍有廣泛的市場。
據調查統計②全國每天需要20萬標箱火柴,而用木材生產火柴每天需消耗7200立方米的優質木材。
問:一年按365天計算,一年大約要用掉多少木材呢?
③7200×365=2628000(立方米)
問:這些木材從哪來?需要砍伐多少棵大樹呢?咱們一起來估算一下好嗎?以下是一些相關的數據:一般用楊樹製造火柴,這種樹成活15至20年能被砍伐,直徑大約是40厘米,高15至20米。
師:我們把可用部分可以看成是一個什麼體?(近似的圓柱體)那可用部分的體積是多少呢?要用到我們學過的什麼知識?(求圓柱體的體積 V=Sh)
(1) 學生試算。
(2) 反饋交流。
202×3.14×1500=1884000(cm3)=1.884(m3)
2628000÷1.884≈140(萬棵)
④:一棵樹的佔地面積大約是20平方米。那一年我們將砍伐多大面積的森林呢?
140×20=2800(萬平方米)=2800公頃
師:中國在未來相當長一段時間內,依然需要在人口壓力大而資源相對不足的基礎上推進經濟發展,大量的砍伐,甚至是不正確的砍伐樹木,就等於在不斷地破壞我們賴以生存的環境,因此處理好經濟發展和環境保護的矛盾,保持經濟的可持續發展,是非常重要的問題。有關專家指出,用麥稈、草稈為原料生產火柴,可以節省大量木材,市場前景廣闊。
(點評:通過教學對學生進行環境保護的教育,滲透EPD的教育思想,即環境保護和可持續性發展。)
(五)課堂小結。 3分
1.用一句話說說這節課你最大的收獲和體會是什麼?
2師:今天我們解決的是生活中的數學問題。(揭示課題)生活中還有許多問題值得我們去探討、去研究。生活是一個大課堂,我們要善於從數學的角度去觀察生活,體驗生活。
(六)板書設計
生 活 中 的 數 學
面積:長方體的表面積 S= 2(ab+ah+bh)
體積:長方體的體積 V= abh
圓柱體的體積 V= Sh
五.教師反思
一提到復習課,別說學生,就連老師都撓頭。學過的舊知識被老師一股腦地搬出來,然後就是機械地要求學生記定義、記概念、記公式,接踵而來的就是大量的練習。對這樣的復習,學生的興趣不高,教師也被搞的疲憊不堪。如何才能把復習課上的生動有趣呢?本節課我又進行了一次大膽的嘗試,利用火柴盒讓學生從數學的角度提出問題、解決問題,把數學與生活巧妙地結合在一起,既掌握了相關的數學知識,同時又進行了一定的思想教育,可謂是一舉兩得。更重要的是學生不再認為復習課枯燥無味,而是節節有新的收獲。火柴盒曾是我們生活中必不可少的一樣東西,但近年來被其它一些東西所取代,很多學生對它缺乏了解。新課標指出,教師應因地制宜,有意識、有目的地開發和利用各種資源。於是我把它引進課堂,並人手一個。學生在計算火柴盒的實際用料面積時方法多樣,真正做到了一題多解;在討論火柴盒的包裝問題時,學生的包裝方法不盡相同,大多數同學從省紙的角度出發,認為怎樣消失的面最大就怎樣包,也會有個別的同學是從美觀的角度出發,提出自己的包裝方案,體現出現代學生的個性特點。整節課把學生的自主探索與合作交流有機地結合起來,既有師生之間的互動,也有生生之間的互動。最精彩的還應是學生最後的發言:「我覺得,我們真的該保護環境了……」
6. 求一篇關於生活中的幾何圖形的研究性學習報告,長一點的好嗎謝謝
摘要:
本文就小學數學研究性學習的理論與實踐兩個方面,對本課題組成員近三年來的學習、研究及實施成果進行較為全面的總結,著重闡述了小學數學研究性學習(或探究式學習)模式的建構與在教學過程中的體現及小學數學學科課程如何進行校本化實施的一些做法,並在此基礎上,對課題研究效果進行評價,力求用案例來說明問題。
關鍵詞:
小學數學 研究性學習 教學模式 校本化實施
課題的提出
本課題的研究是在社會發展、教育改革的強力推動和學校倡導的個性化學習的背景下提出的。
1. 社會發展的需要
專家認為:農業社會,會用記憶性的學習方法就行了,到了工業社會時代,僅靠記憶學習就不行了,所以後來就提倡理解性學習。現在是信息社會,知識多得學不完,新知識不斷地涌現,舊知識不斷地被更新,所以我們必須教會學生研究性學習。只有這樣,才能為社會培養出高素質的創新型人才來。
2. 教育改革的推動
21世紀是知識經濟時代,知識正在取代資本和能源,成為未來社會最主要的生產力要素,其結果必然是社會更加重視教育,重視人才。從20世紀80年代末開始,世界各國紛紛對本國的教育系統做出重大改革。「研究性學習」 正被國際教育界普遍推崇,法國的研究性學習課程於1995-1996學年,在初中二年級開始實驗。稱之為「多樣化途徑」(parcours diversifies)。美國的研究性學習第一次發生與19世紀末到20世紀初,主要倡導者為杜威(j,deway)。第二次發生在20世紀50-70年代主要倡導者為布魯納納、施瓦布、費尼克斯等人,他們在理論上系統論證了「發現學習」「探究學習」的合理性,推動了課程改革運動——學習結構運用。第三次發生於20世紀90年代,倡導「以項目為中心的學習」和「以問題為中心的學習」。而我國教育部也於2000年1月頒布《全日制普通高級中學課程計劃》(試驗修訂稿)第一次在基礎教育課程中,提出了增設綜合實踐活動課。其中就包括研究性學習。在新一輪中小學課改中,又將綜合實踐活動擴展到小學三年級,且每周安排了3課時。並要求在各科的教學活動中要轉變教師的角色和學生的學習方式,倡導研究性或探究性學習。
3. 學校倡導學生個性化學習
我校是浙江省首批創新教育試點學校,在五年的教育課題研究過程中,逐步形成了自己的辦學特色與教學特色。其中個性化學習是我們的特色之一,如「對話式」課堂教學,研究性學習方式等。小學數學研究性學習課題,是對學校創新教育課題研究的深入與持續,目的在於轉變學生的學習方式,變被動接受性學習,為主動探究性學習,提高學生的學習興趣,培養他們的數學能力。
課題的設計
一、 研究目標
1.構建小學數學研究性(探究性)學習的理論體系(包括概念、理論依據、學習策略、教學原則等)。
2. 構建小學數學研究性(探究性)學習的實踐研究體系(包括教學模式、小學數學學科課程校本化實施、數學生活化綜合探究活動等)。
3.通過本課題研究,轉變教師教學角色和學生的學習方式,使學生形成個性化學習能力(包括發現問題的能力,主動探究的學習興趣、獨立思考的數學思維能力和解決生活中數學問題的實際動手操作能力等)
二、 研究方法
採用行動研究法,並輔之文獻法、觀察法、問卷調查法等。
三、 研究對象
瓦市小學三至六年級段學生
四、 研究內容與體系
(一)構建小學教學研究性(探究性)學習的理論體系。
1.小學數學研究性(探究性)學習的概念涵義。
2.小學數學研究性(探究性)學習的理論依據。
3.小學數學研究性(探究性)學習的策略。
4.小學數學研究性(探究性)學習的教學原則。
(二)構建小學數學研究(探究性)學習的課堂教學模式與研究體系
1.探究式課堂教學模式
2.探究式課堂教學研究體系與案例
(三)小學數學學科課程的校本化實施研究
(四)小學數學生活化綜合探究生活化的實施研究
五、 研究步驟
(一)准備階段(2003年8月—9月)
1. 學習「研究性學習」理論
2. 建立「研究性學習」理論
3. 制訂研究實施方案
4. 開題論證、修訂方案、爭取立項
(二)實施階段(2003年10月—2005年6月)
1. 對實驗班級進行學習習慣和課堂教學現狀調查
2. 按「研究性學習」教學模式進行備課上課
3. 每學期召開一次研討會,上「研究性學習觀摩課
4. 進行中期評估
5. 編教案集或研究案例集
6. 開展小學數學學科課程校本化實施研究
7. 開展小學數學生活化綜合探究性學習活動
(三)總結階段(2005年7月—2005年8月)
1. 匯編有關資料,進行資料整理和數據統計與分析
2. 撰寫課題結題報告
3. 進行成果鑒定或參評
研究實施
一、 構建小學數學研究性學習的理論體系
(一)關於研究性學習概念界定
研究性學習的含義有廣義與狹義之分。廣義:泛指學生主動探究的學習活動。狹義:指學生在教師指導下,從自然、社會和生活中選擇和確定專題進行的研究,並在研究過程中主動地獲取知識、應用知識、解決問題的學習活動(教育部《研究性學習實施指南》)。也有不少學者把它描述為:指學生在教師的指導下,用類似科學研究的方式,主動地獲取知識、應用知識、解決問題的學習活動。
(二)研究性(探究性)學習的理論依據:
(1)兒童心理學的依據:
好奇、愛尋根究底是兒童與生俱來的天性。開展探究性學習,順應了兒童的這種天性,如果引導適當,特別是不斷融入探究成功的體驗之後,這種不斷增強的探究慾望,就容易轉化為對知識的追求和對科學的熱愛。
(2)認知心理學的依據:
在認知心理學中,認識結構論和有意學習論,對小學生探究性學習具有重要指導意義。認識結構論十分強調學習原有的知識經驗,認為學習者的認識不斷發生,深化的過程,也就是個體不斷探究、內化、重組的過程。奧蘇伯爾的有意義學習理論,揭示了意義學習的兩個必備條件,他提出了「先行組織者」的概念,為探究教學中教學情境的創設,以及必要的復習與輔墊提供一定的理論支撐。
(3)建構主義學習的依據
建構主義重視學習活動中學生的主體性,重視學生面對具體情景進行意義建構,重視學習活動中師生間和學生之間的「協作」、「對話」和反思,從而主張建立一個民主、寬松的教學環境。這也是研究性學習所需要的環境。這些觀點對於我們開展探究性學習,在其特定意義上具有一定的理論支撐作用。
(三)關於小學數學研究性(探究性)學習策略
1.教師有效干預策略
(1)問題情境創設策略
因為任何真正意義上的研究都是從問題開始的。問題情境的創設是研究性學習(探究性學習)的前提,教師首先要把學習目標轉化為要探究的問題。有了好的問題情景,能激發學生強烈問題意識和探究動機,引發學生積極的思考。
小學數學教學中的問題情境創設常用的方法有:
①聯系生活實際,創設問題情景:
如學習「小數的認識」,可創設商店購物、分餅等情景。
②藉助直觀手段,創設問題情景:
如學習有餘數除法,藉助學具或實物的等分、引出有餘數但不能繼續等分,進而探究其中的規律。
③藉助故事,創設問題情景:
如學習「循環小數」時,可給學生講「廟里的和尚」這個故事,然後問學生,你們聽出了什麼問題。
④藉助多媒體手段,創設問題情景:
如學習「圓的面積」,教師先用課件顯示一幅美麗的草原牧羊掛圖,然後點擊文字說明:在一片綠茵茵的草地中央,有一根木樁上拴著一隻雪白的小山羊,小山羊正在吃草。動腦筋爺爺問小朋友:「這只小羊吃草的最大面積是多少?」再顯示所描述彩圖。
⑤聯系舊知,利用類比推理創設問題情景:
如學習乘法運算定律時,聯系加法運算定理,讓學生猜想乘法是否也存在像加法那樣類似的定律,並提出驗證要求。
(2)誘導學生主動探索策略:
①激活問題意識策略:
如在學習應用題時,讓學生自己提出要解決的問題及解題思路等。
②提供必要的輔助手段:
如提示學生選用圖示、列表、列舉等方式幫助探究等。
(3)課內向課外適當延伸策略:
指可以事先布置學生課前收集某些素材,數據及准備學具等。也可讓學生帶著問題,課後到圖書館、大自然等地方搜集有關數據、材料進行研究。
(4)課堂互動策略:
①建立學習小組②培養合作交流能力③做好討論的啟動與調控工作。
2.學生自主學習探究策略
(1)自主確定學習目標
研究性學習是一種基於教材又不被教材束縛的學習方式,其目標必須以積極的情感目標及一定的技能目標為基礎。在變成基本的認知目標產生質的飛躍,從認知到發現,從發現到研究,從研究得出進一步的認識,進而推出更積極的學習情緒的產生。以這種研究性的思想為學習的教學目標,是具有彈性的,是變通的,是各異的,更是多層次的,這樣可以使不同層次的學生通過研究性學習得到不同的發展。所以,開展數學研究性學習時,學生可以根據自己興趣,學習能力,來確定自己的研究目標。
(2)研究內容選擇策略
數學教材體系比較注重學生去發現知識,而沒有特別地設計學生研究性學習內容。因此在引導形式學習時,需充分挖掘教材的研究性學習因素,採用新形式、活解法、開放性較強的學習內容,應多注意研究內容的探索性,題材選擇的豐富性;信息表現形式的選擇性;解題策略的多樣性等。
① 研究性學習內容生活化
「數學是人們對客觀世界定性把握和定量刻畫,逐漸抽象概括,形成方法和理論,並進行廣泛應用的過程。」從此觀點我們可以看出,數學是來源於生活,只有讓數學紮根於生活這個肥沃的土壤中,注意以學生的生活實踐為基礎,選擇他們感興趣的事,才能激發他們好奇心下的求知慾望,然後以這種求知慾望下的內容作為研究性學習的素材,學生才會覺得自己的數學學習是有意義的。這樣更有益於學生對提出的問題產生想像,產生出積極的情感體驗和開拓意識。
如大家一起去旅遊時,到了一個景點後每人都會有一張景點地圖,這上面不僅標明了地理方位,而且還有比例尺。通過比例尺,就可以知道這景點到底有多大,大概需要多少時間。這正是把數學問題轉化為生活問題,即是「數學是人們生活、勞動和學習必不可少的工具。」
學生用具體的數學知識,去研究生活,服務生活,體現其生活化的一面,讓數學與生活的關系更加緊密,也使研究性學習更有意義。
②研究性學習內容數學化
「數學化」是指人們在觀察數學時,運用數學方法觀察研究各種具體現象,並加以整理和組織的過程,這個過程包括把現實問題轉化為數學問題的過程。研究性學習的目標,就是讓學生通過學習研究,掌握數學思想方法。所以教師在選題時應選那種數學性強,具有一定深度、廣度的內容,讓學生去研究,得出結論,加深對數學的理解。
如在學習圓周率後,有這樣一個與生活有關的數學問題:有一個圓形的禮品盒,底面半徑是10厘米,外面要用包裝紙來裝飾一下,如何來包裝,才是最佳方案呢?學生通過親自動手,合作討論,找到了最佳包裝方案。這個問題就是把生活問題轉化為數學問題,充分體現了數學的美學魅力及實用功能。
③研究性學習內容廣博化
數學學科和其他學科一樣,都不是孤立存在的。它與學生學習的各科,如語文、自然、社會、音樂、美術、體育等有著千絲萬縷的聯系。學生在學習數學時無法與其他學科割裂開來,所以在研究問題時,也要注意學科的廣博性,與其他學科的橫向聯系,做到各科之間相互滲透、相互補充。
如在教學對稱圖形時,教師可以採用多媒體展示出幾幅圖片,其中有關於名勝古跡的照片,還有植物與動物的圖片,以及一些簡單的數學幾何圖形。讓學生找出對稱的圖形有哪些,接著可以出一組研究題:①這些圖形各有什麼特點?②你能說出照片中的名勝古跡各在何處嗎?③每個圖形是不是僅有一條對稱軸?學生在研究過程中就進一步了解了地理和自然知識與數學的聯系。
④研究性學習內容的開放化
羅伯遜指出:「限制和順從不能養成創造性,權威主義的教育只能造就馴服的而不是創造性的學生。」所以開放性是創新性的重要方面,由於開放性內容知識容量大,思考方法多,解決問題活,極富挑戰性,因而有利於激發學生的好奇心,調動學生的積極性與主動性,對學生創新能力的培養具有得天獨厚的優勢,學生能從各種不同的思考過程和問題解的特徵中,總結出具有普遍性的東西,不同程度地發展了學生發散性思維,使得創造想像能力進一步加強。
如在三年級學習應用減法的運算性質簡算後,就可以出這樣一道題目作為研究題:68 -( )-( )= 68 -( + );65 -( + )= 65 -()-();在倒數的啟發思考中,可以出這樣一道題目()×()=1。這種開放式的研究題,激發了學生創造的慾望,讓學生通過自己的努力來取得成功。
(四)研究性學習的教學原則
1.主體性原則:指課堂教學中研究性學習要以學生為主體,以教師為主導,教師要多想想,學生在干什麼?他們到底需要什麼?更多地把關注點放在學生身上,真正地體現學生的主體作用。
2.探索性原則:指通過學生自主的探索,獲取運演算法則,概念性的結論及數學規律性的東西等。在教學中,教師要引導學生自己去發現,去探究,讓學生親歷「做數學」的過程。
3.交互性原則:即教學中的師生,生生間的交往與互動。在教學過程中要通過相互啟發、相互補充、相互合作,從而達到共識、共享與共進,實現共同發展的目的。
4.賞識與激勵性原則:在教學中,適時、適當地給學生以賞識,鼓勵學生質疑問難,能激其不斷進取,積極探究的學習動機。
5.發展性原則:從生命全程的需要規劃學生的發展目標,在教學中,始終用發展的眼光看待學生,幫助學生樹立自信,尊重並支持差異性發展。
6.創新性原則:在教學中,要給學生留有充足的創新的時間與空間,激發學生在創新情趣,啟迪學生的創新意識,發展其創新思維,培養其創新技能。
二、 構建小學數學研究性(探究性)學習的課堂教學模式與研究性體系
(一)小學數學探究式課堂教學模式
構建研究性學習(或探究性學習)的課堂教學模式:最關鍵的問題是如何正確把握教師、學生以及教材這三者之間的關系。從教材來說,不宜以權威的身份把既定的結論直接呈現給學生,而應盡可能創設和拓展學生探索問題的空間;教師作為學生數學學習的組織者,引導者和合作者,主要應承擔探究目標的確定,內容的選擇、情境的營造,問題的編制、活動的調控、學習動機的激勵等工作;學生是數學學習的主人,應該充分享受學習探究自主權。本模式就力圖體現這三者的關系。其模式建構如下:
7. 關於生活中的圓的數學日記!400字以上!
我的數學日記——圓形
上一次的數學日記中,還漏了哪些圖形呢?對,是圓。不是元角分的元,不是原來如此的原,而是圓形、圓柱、圓錐、橢圓、圓桌、圓滾滾的——圓。
我們先來溫習一下圓的知識和術語。圓石油一個圓心、一條曲邊、無直邊、無角的平面圖形。圓的中心點叫圓心,經過圓心,在圓內兩個端點分別為圓邊上的兩個點的一條線段叫圓的直徑,直徑的一半叫半徑。在圓內、兩個端點分別為圓邊上的兩個點的一條線段叫圓的直徑,直徑的一半叫半徑。在圓內、兩個端點分別為圓邊上的兩個點的線段叫弦。圓的周長與圓的半徑之比叫圓周率,它約等於3.1416。如果把圓按圓心平均分成360份,每份中的那個角就是1°角。
我們的生活中處處都有圓。輪胎、鍾表、籃球、足球、電風扇、呼啦圈……而且所有的行星、恆星幾乎都是圓形的。輪胎之所以用圓形,是因為圓形的邊上的任何一個點距離圓心的距離都是一樣的——這就是為什麼在眾多平面圖形中只有圓有半徑——所以車開起來很穩。鍾表也是這個道理。電風扇的鐵架做成圓盤狀就能節省材料。
圓上的弦可不是指吉他上的幾根——不過有點像。圓的直徑就是最長的一條弦。而相同長度的兩條弦上相同的兩個點分別距離圓心的長度相同。說到圓心,我就要教給大家一個做圓心的方法:將圓對折形成兩個半圓,再對折形成四個1/4圓,打開後兩個摺痕的交界處就是圓心。
圓真是圖形中最奇特、獨一無二的圖形。在研究圓周率的浩大工程中,可以看出人們對圓下的苦功。現在圓周率數已經到了小數點後兩千多億位,希望人們在對圓的研究中能更進一步!
數學日記(圓柱)
不知不覺中,兩周都已過去了,做為一名快要畢業的畢業生,我不禁感慨萬千。大家都在堅持不懈、鍥而不舍地做一件事——堅持寫周記!這對大家來說,都是非常有益的,它不但可以幫助大家鞏固所學的學習內容,而且可以鍛煉寫作能力。
回顧前幾天的學習生活,我不禁受益匪淺。
經過一個星期的學習,我們學習了求圓柱的側面積、表面積、體積和容積等知識。讓我們再來回憶回憶我們所學的內容吧!首先想想圓柱有什麼名稱:圓柱上下兩個面叫圓柱的底面,圍成圓柱的面還有一個曲面,叫做圓柱的側面,圓柱兩個底面之間的距離叫做圓柱的高。
把圓柱的側面展開,可得到一個長方形,這個長方形的長等於圓柱的底面周長,長方形的寬等於圓柱的高。這樣我們很容易看出圓柱的側面積等於底面周長乘高。
怎樣求圓柱的表面積呢?把圓柱的表面全部展開,那麼我們就看出它像一個除號,圓柱的表面積等於圓柱的側面積加上兩個底面積。接下來又要做題了,而且還是要求很麻煩的圓柱體表面積。唉,求表面積還真不容易。需要求出底面積和側面積,還得相加,稍不留神就會算錯,有沒有什麼好辦法可以一塊求完呢?我思考著。看看底面積和側面積的公式吧!
S底=πr2,有兩個底面,也就是2πr2,再看看側面積公式:S側=2πrh,將它們兩個相加在一起,提取同類項:2πr,利用乘法結合律,組成一個新的公式:S表=2πr(r+h)。一個新的公式從此誕生。有了這個公式只用相乘一次就萬事ok啦!
以前我曾經求過環形面積,運用了一個公式:S環=π(R2-r2),仔細想想,其實這也是公式的組合啊!由兩個圓相減,提取共同的π,得到了新的公式。
這些新的公式的誕生都得歸功於靈活的偷懶!如果不是覺得太麻煩,其實也不會有這樣的公式。其實,靈活的運用公式也是很重要的,有時候,出題的人偷了一個懶,少說了一個條件,那麼我們就可以多求一下。但是,有的地方需要我們偷懶,不偷懶都不可以。
有這么一道題:在一個大正方形里有一個內切圓,大正方形的面積是20平方厘米,求圓的面積。
如果按照常理,我們應該先求出大正方形的邊長,也就是d。然後再求出r,最後求出面積。可是,在這道題里,怎麼才可以求出r和d呢?除非開方,可是這樣是很麻煩的,而且肯定求不盡,怎麼辦呢?這時候就需要靈活的運用公式了。既然圓的面積公式是πr2那麼求不出r求r2也可以呀!這時候我們可以把它看作整體a,也就是說,我們只用求出aπ就可以了。a怎麼求呢?正方形的面積應該是(2r)2,化簡之後就是4r2,也就是4a這樣呢我們就可以用20÷4=5(cm2)求出a,再用5×π≈15.7(cm2)。圓的面積就約為15.7cm2。這樣,不用開方,也可以求出圓的面積aπ。
有很多公式相互結合就可以組成一個簡單方便的實用新公式。
只要創新,其實在把巨人們吃過的饅頭揉在一起,做成一個新的花捲,那不也是很好嗎?
-
8. 求一個生活中的數學的研究課題,數學知識應用
學數學就是為了能在實際生活中應用,數學是人們用來解決實際問題的,其實數學問題就產生在生活中。比如說,上街買東西自然要用到加減法,修房造屋總要畫圖紙。類似這樣的問題數不勝數,這些知識就從生活中產生,最後被人們歸納成數學知識,解決了更多的實際問題。
我曾看見過這樣的一個報道:一個教授問一群外國學生:「12點到1點之間,分針和時針會重合幾次?」那些學生都從手腕上拿下手錶,開始撥表針;而這位教授在給中國學生講到同樣一個問題時,學生們就會套用數學公式來計算。評論說,由此可見,中國學生的數學知識都是從書本上搬到腦子中,不能靈活運用,很少想到在實際生活中學習、掌握數學知識。
從這以後,我開始有意識的把數學和日常生活聯系起來。有一次,媽媽烙餅,鍋里能放兩張餅。我就想,這不是一個數學問題嗎?烙一張餅用兩分鍾,烙正、反面各用一分鍾,鍋里最多同時放兩張餅,那麼烙三張餅最多用幾分鍾呢?我想了想,得出結論:要用3分鍾:先把第一、第二張餅同時放進鍋內,1分鍾後,取出第二張餅,放入第三張餅,把第一張餅翻面;再烙1分鍾,這樣第一張餅就好了,取出來。然後放第二張餅的反面,同時把第三張餅翻過來,這樣3分鍾就全部搞定。
我把這個想法告訴了媽媽,她說,實際上不會這么巧,總得有一些誤差,不過演算法是正確的。看來,我們必須學以致用,才能更好的讓數學服務於我們的生活。
數學就應該在生活中學習。有人說,現在書本上的知識都和實際聯系不大。這說明他們的知識遷移能力還沒有得到充分的鍛煉。正因為學了不能夠很好的理解、運用於日常生活中,才使得很多人對數學不重視。希望同學們到生活中學數學,在生活中用數學,數學與生活密不可分,學深了,學透了,自然會發現,其實數學很有用處。
生活中的數學有哪些例子?很多.如:測量,勾股定理中的(3,4,5)...............