當前位置:首頁 » 課題答辯 » 122名科學家

122名科學家

發布時間: 2021-03-14 20:46:35

Ⅰ 著名科學家的名言名句

對搞科學的人來說,勤奮就是成功之母! —— 茅以升
天才是百分之一的靈感加上百分之九十九的汗水——愛迪生
講到學習方法,我想用六個字來概括:"嚴格、嚴肅、嚴密。"這種科學的學習方法,除了向別人學習之外,更重要的是靠自己有意識的刻苦鍛煉。——蘇步青
獨立思考能力是科學研究和創造發明的一項必備才能。在歷史上任何一個較重要的科學上的創造和發明,都是和創造發明者的獨立地深入地看問題的方法分不開的。 ——華羅庚
想像力比知識更重要,因為知識是有限的,而想像力概括著世界的一切,推動著進步,並且是知識進化的源泉。嚴格地說,想像力是科學研究中的實在因素。——愛因斯坦
知識就是力量。——培 根
天然的才能好象天然的植物,需要學問來修剪。——培 根
聰明的人有長的耳朵和短的舌頭。——弗萊格
金錢這種東西,只要能解決個人的生活就行,若是過多了,它會成為遏制人類才能的禍害。
——諾貝爾
科學沒有國境,但科學家有祖國。——巴斯德
科學需要一個人貢獻出畢生的精力,假定你們每個人有兩次生命,這對你們說來也還是不夠的。——巴甫洛夫
科學要求每個人有極緊張的工作和偉大的熱情。
——巴甫洛夫
「難」也是如此,面對懸崖峭壁,一百年也看不出一條縫來,但用斧鑿,能進一寸進一寸,得進一尺進一尺,不斷積累,飛躍必來,突破隨之。---華羅庚
我真想發明一種具有那麼可怕的大規模破壞力的特質或機器,以至於戰爭將會因此而永遠變為不可能的事情。---諾貝爾
只有順從自然,才能駕馭自然。---培根
真理的大海,讓未發現的一切事物躺卧在我的眼前,任我去探尋。---牛頓
凡在小事上對真理持輕率態度的人,在大事上也是不足信的。---愛因斯坦
人的天職在勇於探索真理。---哥白尼
我不知道世上的人對我怎樣評價。我卻這樣認為:我好像是在海上玩耍,時而發現了一個光滑的石子兒,時而發現一個美麗的貝殼而為之高興的孩子。盡管如此,那真理的海洋還神秘地展現在我們面前。---牛頓
科學的靈感,決不是坐等可以等來的。如果說,科學上的發現有什麼偶然的機遇的話,那麼這種「偶然的機遇」只能給那些學有素養的人,給那些善於獨立思考的人,給那些具有鍥而不舍的精神的人,而不會給懶漢。---華羅庚
一個科學家應該考慮到後世的評論,不必考慮當時的辱罵或稱贊。---巴斯德
我們在享受著他人的發明給我們帶來的巨大益處,我們也必須樂於用自己的發明去為他人服務。---富蘭克林
我的人生哲學是工作,我要揭示大自然的奧妙,為人類造福。---愛迪生
我平生從來沒有做出過一次偶然的發明。我的一切發明都是經過深思熟慮和嚴格試驗的結果。---愛迪生
發展獨立思考和獨立判斷的一般能力,應當始終放在首位,而不應當把獲得專業知識放在首位。如果一個人掌握了他的學科的基礎理論,並且學會了獨立地思考和工作,他必定會找到他自己的道路,而且比起那種主要以獲得細節知識為其培訓內容的人來,他一定會更好地適應進步和變化。---愛因斯坦
一切推理都必須從觀察與實驗得來。---伽利略
要學會做科學中的粗活。要研究事實,對比事實,積聚事實。---巴甫洛夫
我的那些最重要的發現是受到失敗的啟示而作出的。---戴維
感謝上帝沒有把我造成一個靈巧的工匠。我的那些最重要的發現是受到失敗的啟發而獲得的。---戴維
我要把人生變成科學的夢,然後再把夢變成現實。---居里夫人
科學是沒有國界的,因為她是屬於全人類的財富,是照亮世界的火把,但學者是屬於祖國的。---巴斯德
我願用我全部的生命從事科學研究,來貢獻給生育我、栽培我的祖國和人民。---巴甫洛夫
歷史告誡我們說,一種嶄新的真理慣常的命運是:始於異端,終於迷信。---赫胥黎
使人們寧願謊言,而不願追隨真理的原因,不僅由於探索真理是艱苦的,也不僅由於真理會約束人的想像,而且是由於謊更能迎合人類某些惡劣的天性。---培根
科學的基礎是健康的身體。---居里夫人
沒有僥幸這回事,最偶然的意外,似乎也都是有必然性的。---愛因斯坦
總有一天,真理會取勝。即使真理在他一生中未能得到勝利,為了堅持真理也會使他變得更好,更加聰明。---赫胥黎
目前的時代,真理是那樣晦暗不明,謊言又是那樣根深蒂固,以致除非我們熱愛真理,我們便不會認識真理。---帕斯卡
研究真理可以有三個目的:當我們探索時,就要發現到真理;當我們找到時,就要證明真理;當我們審查時,就要把它同謬誤區別開來。---帕斯卡
謬誤的好處是一時的,真理的好處是永久的;真理有弊病時,這些弊病是很快就會消滅的,而謬誤的弊病則與謬誤始終相隨。---狄德羅
探索真理比佔有真理更為可貴。---愛因斯坦
追求客觀真理和知識是人的最高和永恆的目標。---愛因斯坦
在真理的認識方面,任何以權威者自居的人,必將在上帝的嬉笑中垮台!---愛因斯坦
我要做的只是以我微薄的力量為真理和正義服務,即使不為人喜歡也在所不惜。---愛因斯坦
真理可能在少數人一邊。---柏拉圖
最初偏離真理毫釐,到頭來就會謬之千里。---亞里士多德
沒有一個人能全面把握真理。---亞里士多德
如果我們過於爽快地承認失敗,就可能使自己發覺不了我們非常接近於正確。---卡爾·波普爾
知識和能力是一點一點積累起來的,要注意有扎實的基礎,要注意復習和鞏固,不能急於求成。——谷超豪
除了知識和學問之外,世上沒有任何力量能在人的精神和心靈中,在人的思想、想像、見解和信仰中建立起統治和權威。——培根
有教養的頭腦的第一個標志就是善於提問。——普列漢諾夫
學問是異常珍貴的東西,從任何源泉吸收都不可恥。——阿卜·日·法拉茲
學習是勞動,是充滿思想的勞動。——烏申斯基
把學問過於用作裝飾是虛假;完全依學問上的規則而斷事是書生的怪癖。——培 根
當你還不能對自己說今天學到了什麼東西時,你就不要去睡覺。——利希頓堡
游手好閑的學習並不比學習游手好閑好。——約·貝勒斯
求學的三個條件是:多觀察、多吃苦、多研究。——加菲勞
學到很多東西的訣竅,就是一下子不要學很多。——洛 克
作為心智脂肪儲備起來的知識並無用處,只有變成了心智肌肉才有用。——斯賓塞
知識和世故不同,真有學問的人往往是很天真的。——羅曼·羅蘭
知識有兩種,其一是我們自己精通的問題;其二是我們知道在哪裡找到關於某問題的知識。——約翰生
自然賜給了我們知識的種子,而不是知識的本身。——寒涅卡
知識是治療恐懼的葯。——愛默生
知識有重量,但成就有光澤。有人感覺到知識的力量,但更多的人只看到成就的光澤。——切斯特菲爾德
知識是珍寶,但實踐是得到它的鑰匙。——托馬斯·富勒
重復是學習之母。——狄慈根

Ⅱ 有那些科學家的名言

如果我們過於爽快地承認失敗,就可能使自己發覺不了我們非常接近於正確。——卡爾•波普爾
真理的大海,讓未發現的一切事物躺卧在我的眼前,任我去探尋。——牛頓(英國)
凡在小事上對真理持輕率態度的人,在大事上也是不足信的。——愛因斯坦(美國)
人的天職在勇於探索真理。——哥白尼(波蘭)
我們在享受著他人的發明給我們帶來的巨大益處,我們也必須樂於用自己的發明去為他人服務。——富蘭克林(美國)
我的人生哲學是工作,我要揭示大自然的奧妙,為人類造福。——愛迪生(美國)
一切推理都必須從觀察與實驗得來。——伽利略(義大利)
我的那些最重要的發現是受到失敗的啟示而作出的。——戴維(英國)
對搞科學的人來說,勤奮就是成功之母。——茅以升(中國)
科學的基礎是健康的身體。——居里夫人(法國)
我要把人生變成科學的夢,然後再把夢變成現實。——居里夫人(法國)
研究真理可以有三個目的:當我們探索時,就要發現到真理;當我們找到時,就要證明真理;當我們審查時,就要把它同謬誤區別開來。——帕斯卡(法國)
探索真理比佔有真理更為可貴。——愛因斯坦(美國)
.最初偏離真理毫釐,到頭來就會謬之千里。——亞里士多德(希臘)
科學的每一項巨大成就,都是以大膽的幻想為出發點的。——杜威(美國)
一旦科學插上幻想的翅膀,它就能贏得勝利。——法拉第(英國)
科學是使人精神變得勇敢的最好途徑。——布魯諾(義大利)
追求科學需要特殊的勇敢。——伽利略(義大利)
我始終努力保持自己思想的自由,我可以放棄任何假說,無論是如何心愛的,只要事實證明它是不符。——達爾文(英國)
人的天職在勇於探索真理。——哥白尼(波蘭)
我們在享受著他人的發明給我們帶來的巨大益處,我們也必須樂於用自己的發明去為他人服務。——富蘭克林(美國)
我的人生哲學是工作,我要揭示大自然的奧妙,為人類造福。——愛迪生(美國)
一切推理都必須從觀察與實驗得來。——伽利略(義大利)
我的那些最重要的發現是受到失敗的啟示而作出的。——戴維 (英國)
對搞科學的人來說,勤奮就是成功之母。——茅以升(中國)
科學的基礎是健康的身體。——居里夫人(法國)
我要把人生變成科學的夢,然後再把夢變成現實。——居里夫人(法國)
研究真理可以有三個目的:當我們探索時,就要發現到真理;當我們找到時,就要證明真理;當我們審查時,就要把它同謬誤區別開來。——帕斯卡(法國)
探索真理比佔有真理更為可貴。——愛因斯坦(美國)
一旦科學插上幻想的翅膀,它就能贏得勝利。——法拉第(英國)
科學是使人精神變得勇敢的最好途徑。——布魯諾(義大利)
追求科學需要特殊的勇敢。——伽利略(義大利)

Ⅲ 請列舉10名物理學家的發明創造

公元前400年,墨翟(公元前478?—前392?)在《墨經》中記載並論述了杠桿、滑輪、平衡、斜面、小孔成像及光色與溫度的關系。
公元前4世紀,亞里士多德(Aristotle,前384—前322)在其所著《物理學》中總結了若干觀察到的事實和實際的經驗。他的自然哲學支配西方近2000年。
公元前3世紀,歐幾里得(Euclid,前330?—前260?)論述光的直線傳播和反射定律。
公元前3世紀,阿基米德(Archimedes,前287?—前212)發明許多機械,包括阿基米德螺旋;發現杠桿原理和浮力定律;研究過重心。
公元前3世紀,古書《韓非子》記載有司南;《呂氏春秋》記有慈石召鐵。
公元前2世紀,劉安《前179—前122》著《准南子》,記載用冰作透鏡,用反射鏡作潛望鏡,還提到人造磁鐵和磁極斥力等。
1世紀,古書《漢書》記載尖端放電、避雷知識和有關的裝置。王充(27—97)著《論衡》,記載有關力學、熱學、聲學、磁學等方面的物理知識。希龍(Heron,62—150)創制蒸汽旋轉器,是利用蒸汔動力的最早嘗試,他還製造過虹吸管。
2世紀,托勒密(C.Ptolemaeus,100?—170?)發現大氣折射。張衡(78—139)創制地動儀,可以測報地震方位,創制渾天儀。王符(85—162)著《潛夫論》分析人眼的作用。
5世紀,祖沖之(429—500),改造指南車,精確推算л值,在天文學上精確編制《大明歷》。
8世紀,王冰(唐代人)記載並探討了大氣壓力現象。
11世紀,沈括(1031—1095)著《夢溪筆談》,記載地磁偏角的發現,凹面鏡成像原理和共振現象等。
13世紀,趙友欽(1279—1368)著《革象新書》,記載有他作過的光學實驗以及光的照度、光的直線傳播、視角與小孔成象等問題。
15世紀,達·芬奇(L.da Vinci,1452—1519)設計了大量機械,發明溫度計和風力計,最早研究永動機不可能問題。
16世紀,諾曼(R.Norman)在《新奇的吸引力》一書中描述了磁傾角的發現。
1583年,伽利略(Galileo Galilei,1564—1642)發現擺的等時性。
1586年,斯梯芬(S.Stevin,1542—1620)著《靜力學原理》,通過分析斜面上球鏈的平衡論證了力的分解。
1593年,伽利略發明空氣溫度計。
1600年,吉爾伯特(W.Gilbert,1548—1603)著《磁石》一書,系統地論述了地球是個大磁石,描述了許多磁學實驗,初次提出摩擦吸引輕物體不是由於磁力。
1605年,弗·培根(F.Bacon,1561—1626)著《學術的進展》,提倡實驗哲學,強調以實驗為基礎的歸納法,對17世紀科學實驗的興起起了很大的號召作用。
1609年,伽利略,初次測光速,未獲成功。1609年,開普勒(J.Kepler,1571—1630)著《新天文學》,提出開普勒第一、第二定律。
1619年,開普勒著《宇宙諧和論》,提出開普勒第三定律。
1620年,斯涅耳(W.Snell,1580—1626)從實驗歸納出光的反射和折射定律。
1632年,伽利略《關於托勒密和哥白尼兩大世界體系的對話》出版,支持了地動學說,首先闡明了運動的相對性原理。
1636年,麥森(M.Mersenne,1588—1648)測量聲的振動頻率,發現諧音,求出空氣中的聲速。
1638年,伽利略的《兩門新科學的對話》出版,討論了材料抗斷裂、媒質對運動的阻力、慣性原理、自由落體運動、斜面上物體的運動、拋射體的運動等問題,給出了勻速運動和勻加速運動的定義。
1643年,托里拆利(E.Torricelli,1608—1647)和維維安尼(V.Viviani,1622—1703)提出氣壓概念,發明了水銀氣壓計。
年,帕斯卡(B.Pascal,1623—1662)發現靜止流體中壓力傳遞的原理(即帕斯卡原理)。
1654年,蓋里克(O.V.Guericke,1602—1686)發明抽氣泵,獲得真空。
1761年,布萊克提出潛熱概念,奠定了量熱學基礎。
1767年,普列斯特利(J.Priestley,1733—1804)根據富蘭克林所做的「導體內不存在靜電荷的實驗」,推得靜電力的平方反比定律。
1775年,伏打(A.Volta,1745—1827)發明起電盤。
1775年,法國科學院宣布不再審理永動機的設計方案。
1780年,伽伐尼(A.Galvani,1737—1798)發現蛙腿筋肉收縮現象,認為是動物電所致,
1791年才發表。1785年,庫侖(C.A.Coulomb,1736—1806)用他自己發明的扭秤,從實驗得到靜電力的平方反比定律。在這以前,米切爾(J.Michell,1724—1793)已有過類似設計,並於1750年提出磁力的平方反比定律。
1787年,查理(J.A.C.Charles,1746—1823)發現氣體膨脹的查理—蓋·呂薩克定律。蓋·呂薩克(Gay-lussac,1778—1850)的研究發表於1802年。
1788年,拉格朗日(J.L.Lagrange,1736—1813)的《分析力學》出版。
1792年,伏打研究伽伐尼現象,認為是兩種金屬接觸所致。
1798年,卡文迪什(H.Cavendish,1731—1810)用扭秤實驗測定萬有引力常數G。倫福德(Count Rumford,即B.Thompson,1753—1841)發表他的摩擦生熱的實驗,這些實驗事實是反對熱質說的重要依據。
1799年,戴維(H.Davy,1778—1829)做真空中的摩擦實驗,以證明熱是物體微粒的振動所致。
1800年,伏打發明伏打電堆。赫謝爾(W.Herschel,1788—1822)從太陽光譜的輻射熱效應發現紅外線。
1801年,里特爾(J.W.Ritter,1776—1810)從太陽光譜的化學作用,發現紫線。楊(T.Young,1773—1829)用干涉法測光波波長,提出光波干涉原理。
1802年,沃拉斯頓(W.H.Wollaston,1766—1828)發現太陽光譜中有暗線。
1808年,馬呂斯(E.J.Malus,1775—1812)發現光的偏振現象。
1811年,布儒斯特(D.Brewster,1781—1868)發現偏振光的布儒斯特定律。
1815年,夫琅和費(J.V.Fraunhofer,1787—1826)開始用分光鏡研究太陽光譜中的暗線。
1815年,菲涅耳(A.J.Fresnel,1788—1827)以楊氏干涉實驗原理補充惠更斯原理,形成惠更斯——菲涅耳原理,圓滿地解釋了光的直線傳播和光的衍射問題。
1819年,杜隆(P.1.Dulong,1785—1838)與珀替(A.T.Petit,1791—1820)發現克原子固體比熱是一常數,約為6卡/度·克原子,稱杜隆·珀替定律。
1820年,奧斯特(H.C.Oersted,1771—1851)發現導線通電產生磁效應。畢奧(J.B.Biot,1774—1862)和沙伐(F.Savart,1791—1841)由實驗歸納出電流元的磁場定律。安培(A.M.Ampère,1775—1836)由實驗發現電流之間的相互作用力,1822年進一步研究電流之間的相互作用,提出安培作用力定律。
1821年,塞貝克(T.J.Seebeck,1770—1831)發現溫差電效應(塞貝克效應)。菲涅耳發表光的橫波理論。夫琅和費發明光柵。傅里葉(J.B.J.Fourier,1768—1830)的《熱的分析理論》出版,詳細研究了熱在媒質中的傳播問題。
1824年,S.卡諾(S.Carnot,1796—1832)提出卡諾循環。
1826年,歐姆(G.S.Ohm,1789—1854)確立歐姆定律。
1827年,布朗(R.Brown,1773—1858)發現懸浮在液體中的細微顆粒不斷地作雜亂無章運動。這是分子運動論的有力證據。
1830年,諾比利(L.Nobili,1784—1835)發明溫差電堆。
1831年,法拉第(M.Faraday,1791—1867)發現電磁感應現象。
1833年,法拉第提出電解定律。
1834年,楞次(H.F.E.Lenz,1804—1865)建立楞次定律。珀耳帖(J.C.A.Peltier,1785—1845)發現電流可以致冷的珀耳帖效應。克拉珀龍(B.P.E.Clapeyron,1799—1864)導出相應的克拉珀龍方程。哈密頓(W.R.Hamilton,1805—1865)提出正則方程和用變分法表示的哈密頓原理。
1835年,亨利(J.Henry,1797—1878)發現自感,1842年發現電振盪放電。
1840年,焦耳(J.P.Joule,1818—1889)從電流的熱效應發現所產生的熱量與電流的平方、電阻及時間成正比,稱焦耳-楞次定律(楞次也獨立地發現了這一定律)。其後,焦耳先後於1843,1845,1847,1849,直至1878年,測量熱功當量,歷經40年,共進行四百多次實驗。1841年,高斯(C.F.Gauss,1777—1855)闡明幾何光學理論。
1842年,多普勒(J.C.Doppler,1803—1853)發現多普勒效應。邁爾(R.Mayer,1814—1878)提出能量守恆與轉化的基本思想。勒諾爾(H.V.Regnault,1810—1878)從實驗測定實際氣體的性質,發現與波意耳定律及蓋·呂薩克定律有偏離。
1843年,法拉第從實驗證明電荷守恆定律。
1845年,法拉第發現強磁場使光的偏振面旋轉,稱法拉第效應。
1846年,瓦特斯頓(J.J.Waterston,1811—1883)根據分子運動論假說,導出了理想氣體狀態方程,並提出能量均分定理。
1849年,斐索(A.H.Fizeau,1819—1896)首次在地面上測光速。
1851年,傅科(J.L.Foucault,1819—1868)做傅科擺實驗,證明地球自轉。
1852年,焦耳與W.湯姆生(W.Thomson,1824—1907)發現氣體焦耳——湯姆生效應(氣體通過狹窄通道後突然膨脹引起溫度變化)。
1853年,維德曼(G.H.Wiedemann,1826—1899)和夫蘭茲(R.Franz)發現,在一定溫度下,許多金屬的熱導率和電導率的比值都是一個常數(即維德曼——夫蘭茲定律)。
1855年,傅科發現渦電流(即傅科電流)。1857年,韋伯(W.E.Weber,1804—1891)與柯爾勞胥(R.H.A.Kohlrausch,1809—1858)測定電荷的靜電單位和電磁單位之比,發現該值接近於真空中的光速。
1858年,克勞修斯(R.J.E.Claüsius,1822—1888)引進氣體分子的自由程概念。普呂克爾(J.Plücker,1801—1868)在放電管中發現陰極射線。
1859年,麥克斯韋(J.C.Maxwell,1831—1879)提出氣體分子的速度分布律。基爾霍夫(G.R.Kirchhoff,1824—1887)開創光譜分析,其後通過光譜分析發現銫、銣等新元素。他還發現發射光譜和吸收光譜之間的聯系,建立了輻射定律。
1860年,麥克斯韋發表氣體中輸運過程的初級理論。
1861年,麥克斯韋引進位移電流概念。
1864年,麥克斯韋提出電磁場的基本方程組(後稱麥克斯韋方程組),並推斷電磁波的存在,預測光是一種電磁波,為光的電磁理論奠定了基礎。
1866年,昆特(A.Kundt,1839—1894)做昆特管實驗,用以測量氣體或固體中的聲速。
1868年,玻爾茲曼(L.Boltzmann,1844—1906)推廣麥克斯韋的分子速度分布律,建立了平衡態氣體分子的能量分布律——玻爾茲曼分布律。
1869,安德紐斯(T.Andrews,1813—1885)由實驗發現氣——液相變的臨界現象。希托夫(J.W.Hittorf,1824—1914)用磁場使陰極射線偏轉。
1871年,瓦爾萊(C.F.Varley,1828—1883)發現陰極射線帶負電。
1872年,玻爾茲曼提出輸運方程(後稱為玻爾茲曼輸運方程)、H定理和熵的統計詮釋。
1873年,范德瓦耳斯(J.D.Van der Waals,1837—1923)提出實際氣體狀態方程。
1875年,克爾(J.Kerr,1824—1907)發現在強電場的作用下,某些各向同性的透明介質會變為各向異性,從而使光產生雙折射現象,稱克爾電光效應。
1876年,哥爾茨坦(E.Goldstein,1850—1930)開始大量研究陰極射線的實驗,導致極墜射線的發現。1876—1878年,吉布斯(J.W.Gibbs,1839—1903)提出化學勢的概念、相平衡定律,建立了粒子數可變系統的熱力學基本方程。
1877年,瑞利(J.W.S.Rayleigh,1842—1919)的《聲學原理》出版,為近代聲學奠定了基礎。
1879年,克魯克斯(W.Crookes,1832—1919)開始一系列實驗,研究陰極射線。斯忒藩(J.Stefan,1835—1893)建立了黑體的面輻射強度與絕對溫度關系的經驗公式,製成輻射高溫計,測得太陽表面溫度約為6000攝氏度;1884年玻爾茲曼從理論上證明了此公式,後稱為斯忒藩—玻爾茲曼定律。霍爾(E.H.Hall,1855—1938)發現電流通過金屬,在磁場作用下產生橫向電動勢的霍爾效應。
1880年,居里兄弟(P.Curie,1859—1906;J.Curie,1855—1941)發現晶體的壓電效應。
1881年,邁克耳孫(A.A.Michelson,1852—1931)首次做以太漂移實驗,得零結果。由此產生邁克耳孫干涉儀,靈敏度極高。
1885年,邁克耳孫與莫雷(E.W.Morley,1838—1923)合作改進斐索流水中光速的測量。巴耳末(J.J.Balmer,1825—1898)發表已發現的氫原子可見光波段中4根譜線的波長公式。
1887年,邁克耳孫與莫雷再次做以太漂移實驗,又得零結果。赫茲(H.Hertz,1857—1894)作電磁波實驗,證實麥克斯韋的電磁場理論。同時,赫茲發現光電效應。
1890年,厄沃(B.R.Eotvos)作實驗證明慣性質量與引力質量相等。里德伯(R.J.R.Rydberg,1854—1919)發表鹼金屬和氫原子光譜線通用的波長公式。
1893年,維恩(W.Wien,1864—1928)導出黑體輻射強度分布與溫度關系的位移定律。勒納德(P.Lenard,1862—1947)研究陰極射線時,在射線管上裝一薄鋁窗,使陰極射線從管內穿出進入空氣,射程約1厘米,人稱勒納德射線。
1895年,洛侖茲(H.A.Lorentz,1853—1928)發表電磁場對運動電荷作用力的公式,後稱該力為洛倫茲力。P.居里發現居里點和居里定律。倫琴(W.K.Rontgen,1845—1923)發現X射線。
1896年,維恩發表適用於短波范圍的黑體輻射的能量分布公式。貝克勒爾(A.H.Becquerel,1852—1908)發現放射性。塞曼(P.Zeeman,1865—1943)發現磁場使光譜線分裂,稱塞曼效應。洛侖茲創立經典電子論。
1897年,J.J.湯姆生(J.J.Thomson,1856—1940)從陰極射線證實電子的存在,測出的荷質比與塞曼效應所得數量級相同。其後他又進一步從實驗確證電子存在的普遍性,並直接測量電子電荷。
1898年,盧瑟福(E.Rutherford,1871—1937)揭示鈾輻射組成復雜,他把「軟」的成分稱為α射線,「硬」的成分稱為β射線。居里夫婦(P.Curie與M.S.Curie,1867—1934)發現放射性元素鐳和釙。
1899年,列別捷夫(A.A.Лeóeдeв,1866—1911)實驗證實光壓的存在。盧梅爾(O.Lummer,1860—1925)與魯本斯(H.Rubens,1865—1922)等人做空腔輻射實驗,精確測得輻射以量分布曲線。
1900年,瑞利發表適用於長波范圍的黑體輻射公式。普朗克(M.Planck,1858—1947)提出了符合整個波長范圍的黑體輻射公式,並用能量量子化假設從理論上導出了這個公式。維拉爾德(P.Villard,1860—1934)發現ν射線。
1901年,考夫曼(W.Kaufmann,1871—1947)從鐳輻射線測β射線在電場和磁場中的偏轉,從而發現電子質量隨速度變化。理查森(O.W.Richardson,1879—1959)發現灼熱金屬表面的電子發射規律。後經多年實驗和理論研究,又對這一定律作進一步修正。
1902年,勒納德從光電效應實驗得到光電效應的基本規律:電子的最大速度與光強無關,為愛因斯坦的光量子假說提供實驗基礎。吉布斯出版《統計力學的基本原理》,創立統計系綜理論。
1903年,盧瑟福和索迪(F.Soddy,1877—1956)發表元素的嬗變理論。
1905年,愛因斯坦(A.Einstein,1879—1955)發表關於布朗運動的論文,並發表光量子假說,解釋了光電效應等現象。1905年,朗之萬(P.Langevin,1872—1946)發表順磁性的經典理論。愛因斯坦發表《關於運動媒質的電動力學》一文,首次提出狹義相對論的基本原理,發現質能之間的相當性。
1906年,愛因斯坦發表關於固體熱容的量子理論。
1907年,外斯(P.E.Weiss,1865—1940)發表鐵磁性的分子場理論,提出磁疇假設。
1908年,昂納斯(H.Kammerlingh—Onnes,1853—1926)液化了最後一種「永久氣體」氦。佩蘭(J.B.Perrin,1870—1942)實驗證實布朗運動方程,求得阿佛伽德羅常數。
1908—1910年,布雪勒(A.H.Bucherer,1863—1927)等人,分別精確測量出電子質量隨速度的變化,證實了洛侖茲-愛因斯坦的質量變化公式。1908年,蓋革(H.Geiger,1882—1945)發明計數管。盧瑟福等人從α粒子測定電子電荷е值。
1906—1917年,密立根(R.A.Millikan,1868—1953)測單個電子電荷值,前後歷經11年,實驗方法做過三次改革,做了上千次數據。1909年,蓋革與馬斯登(E.Marsden)在盧瑟福的指導下,從實驗發現α粒子碰撞金屬箔產生大角度散射,導致1911年盧瑟福提出有核原子模型的理論。這一理論於1913年為蓋革和馬斯登的實驗所證實。1911年,昂納斯發現汞、鉛、錫等金屬在低溫下的超導電性。
1911年,威爾遜(C.T.R.Wilson,1869—1959)發明威爾遜雲室,為核物理的研究提供了重要實驗手段。1911年,赫斯(V.F.Hess,1883—1964)發現宇宙射線。
1912年,勞厄(M.V.Laue,1879—1960)提出方案,弗里德里希(W.Friedrich),尼平(P.Knipping,1883—1935)進行X射線衍射實驗,從而證實了X射線的波動性。能斯特(W.Nernst,1864—1941)提出絕對零度不能達到定律(即熱力學第三定律)。
1913年,斯塔克(J.Stark,1874—1957)發現原子光譜在電場作用下的分裂現象(斯塔克效應)。玻爾(N.Bohr,1885—1962)發表氫原子結構理論,解釋了氫原子光譜。布拉格父子(W.H.Bragg,1862—1942;W.L.Bragg,1890—1971)研究X射線衍射,用X射線晶體分光儀,測定X射線衍射角,根據布拉格公式:2dsinθ=ν算出晶格常數d。
1914年,莫塞萊(H.G.J.Moseley,1887—1915)發現原子序數與元素輻射特徵線之間的關系,奠定了X射線光譜學的基礎。弗朗克(J.Franck,1882—1964)與G.赫茲(G.Hertz,1887—1957)測汞的激發電位。查德威克(J.Chadwick,1891—1974)發現β能譜。西格班(K.M.G.Siegbahn,1886—1978)開始研究X射線光譜學。
1915年,在愛因斯坦的倡議下,德哈斯(W.J.de Haas,1878—1960)首次測量回轉磁效應。愛因斯坦建立了廣義相對論。
1916年,密立根用實驗證實了愛因斯坦光電方程。愛因斯坦根據量子躍遷概念推出普朗克輻射公式,同時提出了受激輻射理論,後發展為激光技術的理論基礎。德拜(P.J.S.Debye,1884—1966)提出X射線粉末衍射法。
1919年,愛丁頓(A.S.Eddington,1882—1944)等人在日食觀測中證實了愛因斯坦關於引力使光線彎曲的預言。阿斯頓(F.W.Aston,1877—1945)發明質譜儀,為同位素的研究提供重要手段。盧瑟福首次實現人工核反應。巴克豪森(H.G.Barkhausen)發現磁疇。
1921年,瓦拉塞克發現鐵電性。
1922年,斯特恩(O.Stern,1888—1969)與蓋拉赫(W.Gerlach,1889—1979)使銀原子束穿過非均勻磁場,觀測到分立的磁矩,從而證實空間量子化理論。
1923年,康普頓(A.H.Compton,1892—1962)用光子和電子相互碰撞解釋X射線散射中波長變長的實驗結果,稱康普頓效應。
1924年,德布羅意(L.de Broglie,1892—1987)提出微觀粒子具有波粒二象性的假設。
1924年,玻色(S.Bose,1894—1974)發表光子所服從的統計規律,後經愛因斯坦補充建立了玻色-愛因斯坦統計。
1925年,泡利(W.Pauli,1900—1976)發表不相容原理。海森伯(W.K.Heisenberg,1901—1976)創立矩陣力學。烏倫貝克(G.E.Uhlenbeck,1900—)和高斯密特(S.A.Goudsmit,1902—1979)提出電子自旋假設。
1926年,薛定諤(E.Schrodinger,1887—1961)發表波動力學,證明矩陣力學和波動力學的等價性。費米(E.Fermi,1901—1954)與狄拉克(P.A.M.Dirac,1902—1984)獨立提出費米—狄拉克統計。玻恩(M.Born,1882—1970)發表波函數的統計詮釋。海森伯發表不確定原理。
1927年,玻爾提出量子力學的互補原理。戴維森(C.J.Davisson,1881—1958)與革末(L.H.Germer,1896—1971)用低速電子進行電子散射實驗,證實了電子衍射。同年,G.P.湯姆生(G.P.Thomson,1892—1970)用高速電子獲電子衍射花樣。
1928年,拉曼(C.V.Raman,1888—1970)等人發現散射光的頻率變化,即拉曼效應。狄拉克發表相對論電子波動方程,把電子的相對論性運動和自旋、磁矩聯系了起來。
1928—1930年,布洛赫(F.Bloch,1905—1983)等人為固體的能帶理論奠定了基礎。
1930—1931年,狄拉克提出正電子的空穴理論和磁單極子理論。
1931年,A.H.威爾遜(A.H.Wilson)提出金屬和絕緣體相區別的能帶模型,並預言介於兩者之間存在半導體,為半導體的發展提供了理論基礎。勞倫斯(E.O.Lawrence,1901—1958)等人建成第一台迴旋加速器。
1932年,考克拉夫特(J.D.Cockcroft,1897—1967)與沃爾頓(E.T.Walton)發明高電壓倍加器,用以加速質子,實現人工核蛻變。尤里(H.C.Urey,1893—1981)將天然液態氫蒸發濃縮後,發現氫的同位素—氘的存在。查德威克發現中子。在這以前,盧瑟福於1920年曾設想原子核中還有一種中性粒子,質量大體與質子相等。據此曾安排實驗,但未獲成果。1930年,玻特(W.Bothe,1891—1957)等人在α射線轟擊鈹的實驗中,發現過一種穿透力極強的射線,誤認為ν射線,1931年約里奧(F.Joliot,1900—1958)與伊倫·居里(Curie,1897—1956)讓這種穿透力極強的射線,通過石蠟,打出高速質子。查德威克接著做了大量實驗,並用威爾遜雲室拍照,以無可辯駁的事實說明這一射線即是盧瑟福預言的中子。安德森(C.D.Anderson,1905—)從宇宙線中發現正電子,證實狄拉克的預言。諾爾(M.Knoll)和魯斯卡(E.Ruska)發明透射電子顯微鏡。海森伯、伊萬年科(д.д.ивaнeнкo)獨立發表原子核由質子和中子組成的假說。
1933年,泡利在索爾威會議上詳細論證中微子假說,提出β衰變。蓋奧克(W.F.Giauque)完成了順磁體的絕熱去磁降溫實驗,獲得千分之幾的低溫。邁斯納(W.Mcissner,1882—1974)和奧克森菲爾德(R.Ochsenfeld)發現超導體具有完全的抗磁性。費米發表β衰變的中微子理論。圖夫(M.A.Tuve)建立第一台靜電加速器。布拉開特(P.M.S.Blackett,1897—1974)等人從雲室照片中發現正負電子對。
1934年,切侖柯夫(П.A.Чepeнkoв)發現液體在β射線照射下發光的一種現象,稱切侖柯夫輻射。約里奧-居里夫婦發現人工放射性。
1935年,湯川秀樹發表了核力的介子場論,預言了介子的存在。F.倫敦和H.倫敦發表超導現象的宏觀電動力學理論。N.玻爾提出原子核反應的液滴核模型。
1938年,哈恩(O.Hahn,1879—1968)與斯特拉斯曼(F.Strassmann)發現鈾裂變。卡皮查(∏.Л.kaпичa,1894—)實驗證實氦的超流動性。F.倫敦提出解釋超流動性的統計理論。
1939年,邁特納(L.Meitner,1878—1968)和弗利胥(O.Jrisch)根據液滴核模型指出,哈恩-斯特拉斯曼的實驗結果是一種原子核的裂變現象。奧本海默(J.R.Oppenheimer,1904—1967)根據廣義相對論預言了黑洞的存在。拉比(I.I.Rabi,1898—1987)等人用分子束磁共振法測核磁矩。
1940年,開爾斯特(D.W.Kerst)建造第一台電子感應加速器。
1940—1941年,朗道(Л.Д.Лaндay,1908—1968)提出氦Ⅱ超流性的量子理論。
1941年,布里奇曼(P.W.Bridgeman,1882—1961)發明能產生10萬巴高壓的裝置。
1942年,在費米主持下美國建成世界上第一座裂變反應堆。
1944—1945年,韋克斯勒(B.И.Bеkcлер,1907—1966)和麥克米倫(E.M.McMillan,1907—)各自獨立提出自動穩相原理,為高能加速器的發展開辟了道路。
1946年,阿爾瓦雷茲(L.W.Alvarez,1911—)製成第一台質子直線加速器。珀塞爾(E.M.Purcell)用共振吸收法測核磁矩,布洛赫(F.Bloch,1905—1983)用核感應法測核磁矩,兩人從不同的角度實現核共振。這種方法可以使核磁矩和磁場的測量精度大大提高。
1947年,庫什(P.Kusch)精確測量電子磁矩,發現實驗結果與理論預計有微小偏差。蘭姆(W.E.Lamb,Jr.)與雷瑟福(R.C.Retherford)用微波方法精確測出氫原子能級的差值,發現狄拉克的量子理論仍與實際有不符之處。這一實驗為量了電動力學的發展提供了實驗依據。鮑威爾(C.F.Powell,1903—1969)等用核乳膠的方法在宇宙線中發現л介子。羅徹斯特和巴特勒(C.Butler,1922—)在宇宙線中發現奇異粒子。H.P.卡爾曼和J.W.科爾特曼等發明閃爍計數器。普里高金(I.Prigogine,1917—)提出最小熵產生原理。
1948年,奈耳(L.E.F.Neel,1904—)建立和發展了亞鐵磁性的分子場理論。張文裕發現μ子系弱作用粒子,並發現了μ-子原子。肖克利(W.Shockley),巴丁(J.Bardeen)與布拉頓(W.H.Brattain)發明晶體三極體。伽柏(D.Gabor,1900—1979)提出現代全息照相術前身的波陣面再現原理。朝永振一郎、施溫格(J.Schwinger)費因曼(R.P.Feynman,1918—1988)等分別發表相對論協變的重正化量子電動力學理論,逐步形成消除發散困難的重正化方法。
1949年,邁耶(M.G.Mayer)和簡森(J.H.D.Jensen)等分別提出核殼層模型理論。
1952年,格拉塞(D.A.Glaser)發明氣泡室,比威爾遜雲室更為靈敏。A.玻爾和莫特爾遜(B.B.Mottelson)提出原子核結構的集體模型。
1954年,楊振寧和密耳斯(R.L.Mills)發表非阿貝耳規范場理論。湯斯(C.H.Townes)等人製成受激輻射的微波放大器——脈塞。
1955年,張伯倫(O.Chamberlain)與西格雷(E.G.Segrè,1905—)等人發現反質子。
1956年,李政道、楊振寧提出弱相互作用中宇稱不守恆。關健雄等人實驗驗證了李政道楊振寧提出的弱相互作用中宇宙不守恆的理論。
1957年,巴丁、施里弗和庫珀發表超導微觀理論(即BCS理論)。
1958年,穆斯堡爾(R.L.Mossbauer)實現ν射線的無反沖共振吸收(穆斯堡爾效應)。

Ⅳ 世界上著名的科學家都有哪些

1.瑪麗·居里

瑪麗·居里(Marie Curie,1867年11月7日—1934年7月4日),出生於華沙,世稱「居里夫人」,全名瑪麗亞·斯克沃多夫斯卡·居里(Maria Skłodowska Curie),法國著名波蘭裔科學家、物理學家、化學家。

2.斯蒂芬·威廉·霍金

斯蒂芬·威廉·霍金(Stephen William Hawking),1942年1月8日出生於英國牛津,英國劍橋大學著名物理學家,現代最偉大的物理學家之一、20世紀享有國際盛譽的偉人之一。

3.艾薩克·牛頓

艾薩克·牛頓(1643年1月4日—1727年3月31日)爵士,英國皇家學會會長,英國著名的物理學家,網路全書式的「全才」,著有《自然哲學的數學原理》、《光學》。

4.朱光亞

朱光亞(1924.12.25~2011.2.26),漢族,湖北武漢人,中國核科學事業的主要開拓者之一,吉林大學物理學創始人之一,「兩彈一星功勛獎章」獲得者,入選「感動中國2011年度人物」,被譽為「中國工程科學界支柱性的科學家」、「中國科技眾帥之帥」。

5.埃爾溫·薛定諤

埃爾溫·薛定諤(Erwin Schrödinger,1887年8月12日—1961年1月4日),奧地利物理學家,量子力學奠基人之一,發展了分子生物學。維也納大學哲學博士。蘇黎世大學、柏林大學和格拉茨大學教授。在都柏林高級研究所理論物理學研究組中工作17年。因發展了原子理論,和狄拉克(Paul Dirac)共獲1933年諾貝爾物理學獎。又於1937年榮獲馬克斯·普朗克獎章。

6.阿基米德

阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、網路式科學家、數學家、物理學家、力學家,靜態力學和流體靜力學的奠基人,並且享有「力學之父」的美稱,阿基米德和高斯、牛頓並列為世界三大數學家。阿基米德曾說過:「給我一個支點,我就能撬起整個地球。

7.王選

王選(1937.2.5-2006.2.13),江蘇無錫人,出生於上海, 計算機文字信息處理專家,當代中國印刷業革命的先行者,計算機漢字激光照排技術創始人,被稱為「漢字激光照排系統之父」,被譽為「有市場眼光的科學家」。

8.孫家棟

孫家棟,1929年4月生於遼寧瓦房店市,中科院院士、探月工程總設計師。

9.丁肇中

丁肇中,男,1936年1月27日生於美國密歇根州安阿伯城,祖籍是中國山東省日照市,世界著名實驗物理學家,復旦大學榮譽教授。

10.錢學森

錢學森(1911.12.11-2009.10.31),漢族,吳越王錢鏐第33世孫,生於上海,祖籍浙江省杭州市臨安。世界著名科學家,空氣動力學家,中國載人航天奠基人,中國科學院及中國工程院院士,中國兩彈一星功勛獎章獲得者,被譽為「中國航天之父」「中國導彈之父」「中國自動化控制之父」和「火箭之王」,由於錢學森回國效力,中國導彈、原子彈的發射向前推進了至少20年。

0

Ⅳ 古今中外的著名科學家有哪些

外國著名科學家有:

1、阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、網路式科學家、數學家、物理學家、力學家,靜態力學和流體靜力學的奠基人,並且享有「力學之父」的美稱。

2、瑪麗·居里(Marie Curie,1867年11月7日—1934年7月4日),出生於華沙,世稱「居里夫人」,全名瑪麗亞·斯克沃多夫斯卡·居里(Maria Skłodowska Curie),法國著名波蘭裔科學家、物理學家、化學家。

3、斯蒂芬·威廉·霍金(Stephen William Hawking,1942年1月8日至2018年3月14日),男,出生於英國牛津,英國劍橋大學著名物理學家,現代最偉大的物理學家之一、20世紀享有國際盛譽的偉人之一。

4、阿爾伯特·愛因斯坦(Albert.Einstein,1879年3月14日—1955年4月18日),出生於德國符騰堡王國烏爾姆市,畢業於蘇黎世聯邦理工學院,猶太裔物理學家。

5、達·芬奇是列奧納多·迪·皮耶羅·達·芬奇 (義大利文原名:Leonardo di ser Piero da Vinci),(1452年4月15日公—1519年5月2日),義大利著名畫家、科學家,與拉斐爾,米開朗基羅並稱義大利文藝復興三傑之一

(5)122名科學家擴展閱讀:

1、科學,指的就是分科而學,後指將各種知識通過細化分類(如數學、物理、化學等)研究,形成逐漸完整的知識體系。

2、成為科學家的一個標志是首先是一個獨立的研究者,也就是說一個科學家必需有參與科學研究,發表,交流等活動的自主性。

3、科學家應該首先具備科學精神,嚴謹和持之以恆的內質,這就是所謂的科學精神。獲得了「自主性」、「獨立性」,並且可以參與科學研究和交流等活動的科學研究人員才能稱為實質意義上的科學家。

Ⅵ 科學家名言大全

1.如果我們過於爽快地承認失敗,就可能使自己發覺不了我們非常接近於正確。---卡爾·波普爾

2.「難」也是如此,面對懸崖峭壁,一百年也看不出一條縫來,但用斧鑿,能進一寸進一寸,得進一尺進一尺,不斷積累,飛躍必來,突破隨之。---華羅庚(中國)

3.我真想發明一種具有那麼可怕的大規模破壞力的特質或機器,以至於戰爭將會因此而永遠變為不可能的事情。---諾貝爾(瑞典)

4.只有順從自然,才能駕馭自然。---培根(英國)

5.真理的大海,讓未發現的一切事物躺卧在我的眼前,任我去探尋。---牛頓(英國)

6.謬誤的好處是一時的,真理的好處是永久的;真理有弊病時,這些弊病是很快就會消滅的,而謬誤的弊病則與謬誤始終相隨。---狄德羅(法國)

Ⅶ 世界上著名的科學家有哪些

世界上著名的科學家有:
湯姆遜(1856—1940)英國物理學家。1897發現物質結構的第一種基本粒子一電子。
富爾頓(1765—1815)美國發明家。1807年,富爾頓製成蒸汽汽船。
本茨(1844一1929)德國工程師。1868年,製成世界上第一輛三輪內燃機汽車。
伏打(1745-1829)意大分物理學家。1800年,他製成伏打電堆,不久又發明伏打電池,使人們第一次獲得了穩定而持續的電流。
奧托(1832一1891)德國工程師。1876年,製成第一台四沖程循環的煤氣內燃機。使汽車和其後飛機的問世成為可能。
戴姆勒(1834一1900)德國機械工程師。1883年製成的第一台汽油機,1886年又製成世界上第一輛四輪內燃機汽車。
帕森斯(1854—1931)英國發明家。1884年製成第一台多級反動式汽輪機。
狄塞爾(1858-1913)德國工程師。1897年製造了第一台柴油機。
貝塞麥(1813—1898)英國工程師。1856年發明轉爐煉鋼法。
愛迪生(1847—1931)美國發明家。他一生完成1300多項發明,對人類產生了巨大影響。1897年,他成功地研製出白熾燈。
莫爾斯(1791—1872)美國發明家。1837年,發明電報機,1844年5月24日,拍發出世界上第一封電報。
貝爾(1847—1922)美國發明家。1876年發明電話。
馬可尼(1874—1937)義大利工程師。1895年發明無線電報。1899年3月28日,他成功地實現了無線電通信。
諾貝爾(1833-1896)瑞典發明家。1867年發明安全炸葯。

熱點內容
塗鴉論文 發布:2021-03-31 13:04:48 瀏覽:698
手機資料庫應用 發布:2021-03-31 13:04:28 瀏覽:353
版面217 發布:2021-03-31 13:04:18 瀏覽:587
知網不查的資源 發布:2021-03-31 13:03:43 瀏覽:713
基金贖回參考 發布:2021-03-31 13:02:08 瀏覽:489
懸疑故事範文 發布:2021-03-31 13:02:07 瀏覽:87
做簡單的自我介紹範文 發布:2021-03-31 13:01:48 瀏覽:537
戰略地圖參考 發布:2021-03-31 13:01:09 瀏覽:463
收支模板 發布:2021-03-31 13:00:43 瀏覽:17
電氣學術會議 發布:2021-03-31 13:00:32 瀏覽:731