人工蜂群演算法知網
Ⅰ 人工蜂群演算法的matlab的編程詳細代碼,最好有基於人工蜂群演算法的人工神經網路的編程代碼
蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由內Marco Dorigo於1992年在他的博士論文中容提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質。針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。
參考下蟻群訓練BP網路的代碼。
Ⅱ 有沒有人有多目標人工蜂群演算法的MATLAB代碼。發我一份 不勝感激!!
http://emuch.net/bbs/attachment.php?tid=3808850&aid=11221&pay=yes
裡面有多個文件
其中之一
%/* ABC algorithm coded using MATLAB language */
%/* Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005, motivated by the intelligent behavior of honey bees. */
%/* Referance Papers*/
%/*D. Karaboga, AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION,TECHNICAL REPORT-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department 2005.*/
%/*D. Karaboga, B. Basturk, A powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm, Journal of Global Optimization, Volume:39, Issue:3,pp:459-171, November 2007,ISSN:0925-5001 , doi: 10.1007/s10898-007-9149-x */
%/*D. Karaboga, B. Basturk, On The Performance Of Artificial Bee Colony (ABC) Algorithm, Applied Soft Computing,Volume 8, Issue 1, January 2008, Pages 687-697. */
%/*D. Karaboga, B. Akay, A Comparative Study of Artificial Bee Colony Algorithm, Applied Mathematics and Computation, 214, 108-132, 2009. */
%/*Copyright ?2009 Erciyes University, Intelligent Systems Research Group, The Dept. of Computer Engineering*/
%/*Contact:
%Dervis Karaboga ([email protected] )
%Bahriye Basturk Akay ([email protected])
%*/
clear all
close all
clc
%/* Control Parameters of ABC algorithm*/
NP=20; %/* The number of colony size (employed bees+onlooker bees)*/
FoodNumber=NP/2; %/*The number of food sources equals the half of the colony size*/
limit=100; %/*A food source which could not be improved through "limit" trials is abandoned by its employed bee*/
maxCycle=2500; %/*The number of cycles for foraging {a stopping criteria}*/
%/* Problem specific variables*/
objfun='Sphere'; %cost function to be optimized
D=100; %/*The number of parameters of the problem to be optimized*/
ub=ones(1,D)*100; %/*lower bounds of the parameters. */
lb=ones(1,D)*(-100);%/*upper bound of the parameters.*/
runtime=1;%/*Algorithm can be run many times in order to see its robustness*/
%Foods [FoodNumber][D]; /*Foods is the population of food sources. Each row of Foods matrix is a vector holding D parameters to be optimized. The number of rows of Foods matrix equals to the FoodNumber*/
%ObjVal[FoodNumber]; /*f is a vector holding objective function values associated with food sources */
%Fitness[FoodNumber]; /*fitness is a vector holding fitness (quality) values associated with food sources*/
%trial[FoodNumber]; /*trial is a vector holding trial numbers through which solutions can not be improved*/
%prob[FoodNumber]; /*prob is a vector holding probabilities of food sources (solutions) to be chosen*/
%solution [D]; /*New solution (neighbour) proced by v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) j is a randomly chosen parameter and k is a randomlu chosen solution different from i*/
%ObjValSol; /*Objective function value of new solution*/
%FitnessSol; /*Fitness value of new solution*/
%neighbour, param2change; /*param2change corrresponds to j, neighbour corresponds to k in equation v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij})*/
%GlobalMin; /*Optimum solution obtained by ABC algorithm*/
%GlobalParams[D]; /*Parameters of the optimum solution*/
%GlobalMins[runtime]; /*GlobalMins holds the GlobalMin of each run in multiple runs*/
GlobalMins=zeros(1,runtime);
for r=1:runtime
% /*All food sources are initialized */
%/*Variables are initialized in the range [lb,ub]. If each parameter has different range, use arrays lb[j], ub[j] instead of lb and ub */
Range = repmat((ub-lb),[FoodNumber 1]);
Lower = repmat(lb, [FoodNumber 1]);
Foods = rand(FoodNumber,D) .* Range + Lower;
ObjVal=feval(objfun,Foods);
Fitness=calculateFitness(ObjVal);
%reset trial counters
trial=zeros(1,FoodNumber);
%/*The best food source is memorized*/
BestInd=find(ObjVal==min(ObjVal));
BestInd=BestInd(end);
GlobalMin=ObjVal(BestInd);
GlobalParams=Foods(BestInd,:);
iter=1;
while ((iter <= maxCycle)),
%%%%%%%%% EMPLOYED BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%
for i=1:(FoodNumber)
%/*The parameter to be changed is determined randomly*/
Param2Change=fix(rand*D)+1;
%/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
neighbour=fix(rand*(FoodNumber))+1;
%/*Randomly selected solution must be different from the solution i*/
while(neighbour==i)
neighbour=fix(rand*(FoodNumber))+1;
end;
sol=Foods(i,:);
% /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;
% /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
ind=find(sol<lb);
sol(ind)=lb(ind);
ind=find(sol>ub);
sol(ind)=ub(ind);
%evaluate new solution
ObjValSol=feval(objfun,sol);
FitnessSol=calculateFitness(ObjValSol);
% /*a greedy selection is applied between the current solution i and its mutant*/
if (FitnessSol>Fitness(i)) %/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
Foods(i,:)=sol;
Fitness(i)=FitnessSol;
ObjVal(i)=ObjValSol;
trial(i)=0;
else
trial(i)=trial(i)+1; %/*if the solution i can not be improved, increase its trial counter*/
end;
end;
%%%%%%%%%%%%%%%%%%%%%%%% CalculateProbabilities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%/* A food source is chosen with the probability which is proportioal to its quality*/
%/*Different schemes can be used to calculate the probability values*/
%/*For example prob(i)=fitness(i)/sum(fitness)*/
%/*or in a way used in the metot below prob(i)=a*fitness(i)/max(fitness)+b*/
%/*probability values are calculated by using fitness values and normalized by dividing maximum fitness value*/
prob=(0.9.*Fitness./max(Fitness))+0.1;
%%%%%%%%%%%%%%%%%%%%%%%% ONLOOKER BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
i=1;
t=0;
while(t<FoodNumber)
if(rand<prob(i))
t=t+1;
%/*The parameter to be changed is determined randomly*/
Param2Change=fix(rand*D)+1;
%/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
neighbour=fix(rand*(FoodNumber))+1;
%/*Randomly selected solution must be different from the solution i*/
while(neighbour==i)
neighbour=fix(rand*(FoodNumber))+1;
end;
sol=Foods(i,:);
% /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;
% /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
ind=find(sol<lb);
sol(ind)=lb(ind);
ind=find(sol>ub);
sol(ind)=ub(ind);
%evaluate new solution
ObjValSol=feval(objfun,sol);
FitnessSol=calculateFitness(ObjValSol);
% /*a greedy selection is applied between the current solution i and its mutant*/
if (FitnessSol>Fitness(i)) %/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
Foods(i,:)=sol;
Fitness(i)=FitnessSol;
ObjVal(i)=ObjValSol;
trial(i)=0;
else
trial(i)=trial(i)+1; %/*if the solution i can not be improved, increase its trial counter*/
end;
end;
i=i+1;
if (i==(FoodNumber)+1)
i=1;
end;
end;
%/*The best food source is memorized*/
ind=find(ObjVal==min(ObjVal));
ind=ind(end);
if (ObjVal(ind)<GlobalMin)
GlobalMin=ObjVal(ind);
GlobalParams=Foods(ind,:);
end;
%%%%%%%%%%%% SCOUT BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%/*determine the food sources whose trial counter exceeds the "limit" value.
%In Basic ABC, only one scout is allowed to occur in each cycle*/
ind=find(trial==max(trial));
ind=ind(end);
if (trial(ind)>limit)
Bas(ind)=0;
sol=(ub-lb).*rand(1,D)+lb;
ObjValSol=feval(objfun,sol);
FitnessSol=calculateFitness(ObjValSol);
Foods(ind,:)=sol;
Fitness(ind)=FitnessSol;
ObjVal(ind)=ObjValSol;
end;
fprintf('Ýter=%d ObjVal=%g\n',iter,GlobalMin);
iter=iter+1;
end % End of ABC
GlobalMins(r)=GlobalMin;
end; %end of runs
save all
Ⅲ java人工蜂群演算法求解TSP問題
一、人工蜂群演算法的介紹
人工蜂群演算法(Artificial Bee Colony, ABC)是由Karaboga於2005年提出的一種新穎的基於群智能的全局優化演算法,其直觀背景來源於蜂群的采蜜行為,蜜蜂根據各自的分工進行不同的活動,並實現蜂群信息的共享和交流,從而找到問題的最優解。人工蜂群演算法屬於群智能演算法的一種。
二、人工蜂群演算法的原理
1、原理
標準的ABC演算法通過模擬實際蜜蜂的采蜜機制將人工蜂群分為3類: 采蜜蜂、觀察蜂和偵察蜂。整個蜂群的目標是尋找花蜜量最大的蜜源。在標準的ABC演算法中,采蜜蜂利用先前的蜜源信息尋找新的蜜源並與觀察蜂分享蜜源信息;觀察蜂在蜂房中等待並依據采蜜蜂分享的信息尋找新的蜜源;偵查蜂的任務是尋找一個新的有價值的蜜源,它們在蜂房附近隨機地尋找蜜源。
假設問題的解空間是。
代碼:
[cpp]view plain
#include<iostream>
#include<time.h>
#include<stdlib.h>
#include<cmath>
#include<fstream>
#include<iomanip>
usingnamespacestd;
constintNP=40;//種群的規模,采蜜蜂+觀察蜂
constintFoodNumber=NP/2;//食物的數量,為采蜜蜂的數量
constintlimit=20;//限度,超過這個限度沒有更新采蜜蜂變成偵查蜂
constintmaxCycle=10000;//停止條件
/*****函數的特定參數*****/
constintD=2;//函數的參數個數
constdoublelb=-100;//函數的下界
constdoubleub=100;//函數的上界
doubleresult[maxCycle]={0};
/*****種群的定義****/
structBeeGroup
{
doublecode[D];//函數的維數
doubletrueFit;//記錄真實的最小值
doublefitness;
doublerfitness;//相對適應值比例
inttrail;//表示實驗的次數,用於與limit作比較
}Bee[FoodNumber];
BeeGroupNectarSource[FoodNumber];//蜜源,注意:一切的修改都是針對蜜源而言的
BeeGroupEmployedBee[FoodNumber];//采蜜蜂
BeeGroupOnLooker[FoodNumber];//觀察蜂
BeeGroupBestSource;//記錄最好蜜源
/*****函數的聲明*****/
doublerandom(double,double);//產生區間上的隨機數
voidinitilize();//初始化參數
doublecalculationTruefit(BeeGroup);//計算真實的函數值
doublecalculationFitness(double);//計算適應值
voidCalculateProbabilities();//計算輪盤賭的概率
voidevalueSource();//評價蜜源
voidsendEmployedBees();
voidsendOnlookerBees();
voidsendScoutBees();
voidMemorizeBestSource();
/*******主函數*******/
intmain()
{
ofstreamoutput;
output.open("dataABC.txt");
srand((unsigned)time(NULL));
initilize();//初始化
MemorizeBestSource();//保存最好的蜜源
//主要的循環
intgen=0;
while(gen<maxCycle)
{
sendEmployedBees();
CalculateProbabilities();
sendOnlookerBees();
MemorizeBestSource();
sendScoutBees();
MemorizeBestSource();
output<<setprecision(30)<<BestSource.trueFit<<endl;
gen++;
}
output.close();
cout<<"運行結束!!"<<endl;
return0;
}
/*****函數的實現****/
doublerandom(doublestart,doubleend)//隨機產生區間內的隨機數
{
returnstart+(end-start)*rand()/(RAND_MAX+1.0);
}
voidinitilize()//初始化參數
{
inti,j;
for(i=0;i<FoodNumber;i++)
{
for(j=0;j<D;j++)
{
NectarSource[i].code[j]=random(lb,ub);
EmployedBee[i].code[j]=NectarSource[i].code[j];
OnLooker[i].code[j]=NectarSource[i].code[j];
BestSource.code[j]=NectarSource[0].code[j];
}
/****蜜源的初始化*****/
NectarSource[i].trueFit=calculationTruefit(NectarSource[i]);
NectarSource[i].fitness=calculationFitness(NectarSource[i].trueFit);
NectarSource[i].rfitness=0;
NectarSource[i].trail=0;
/****采蜜蜂的初始化*****/
EmployedBee[i].trueFit=NectarSource[i].trueFit;
EmployedBee[i].fitness=NectarSource[i].fitness;
EmployedBee[i].rfitness=NectarSource[i].rfitness;
EmployedBee[i].trail=NectarSource[i].trail;
/****觀察蜂的初始化****/
OnLooker[i].trueFit=NectarSource[i].trueFit;
OnLooker[i].fitness=NectarSource[i].fitness;
OnLooker[i].rfitness=NectarSource[i].rfitness;
OnLooker[i].trail=NectarSource[i].trail;
}
/*****最優蜜源的初始化*****/
BestSource.trueFit=NectarSource[0].trueFit;
BestSource.fitness=NectarSource[0].fitness;
BestSource.rfitness=NectarSource[0].rfitness;
BestSource.trail=NectarSource[0].trail;
}
doublecalculationTruefit(BeeGroupbee)//計算真實的函數值
{
doubletruefit=0;
/******測試函數1******/
truefit=0.5+(sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))-0.5)
/((1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*(1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1])));
returntruefit;
}
doublecalculationFitness(doubletruefit)//計算適應值
{
doublefitnessResult=0;
if(truefit>=0)
{
fitnessResult=1/(truefit+1);
}else
{
fitnessResult=1+abs(truefit);
}
returnfitnessResult;
}
voidsendEmployedBees()//修改采蜜蜂的函數
{
inti,j,k;
intparam2change;//需要改變的維數
doubleRij;//[-1,1]之間的隨機數
for(i=0;i<FoodNumber;i++)
{
param2change=(int)random(0,D);//隨機選取需要改變的維數
/******選取不等於i的k********/
while(1)
{
k=(int)random(0,FoodNumber);
if(k!=i)
{
break;
}
}
for(j=0;j<D;j++)
{
EmployedBee[i].code[j]=NectarSource[i].code[j];
}
/*******采蜜蜂去更新信息*******/
Rij=random(-1,1);
EmployedBee[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);
/*******判斷是否越界********/
if(EmployedBee[i].code[param2change]>ub)
{
EmployedBee[i].code[param2change]=ub;
}
if(EmployedBee[i].code[param2change]<lb)
{
EmployedBee[i].code[param2change]=lb;
}
EmployedBee[i].trueFit=calculationTruefit(EmployedBee[i]);
EmployedBee[i].fitness=calculationFitness(EmployedBee[i].trueFit);
/******貪婪選擇策略*******/
if(EmployedBee[i].trueFit<NectarSource[i].trueFit)
{
for(j=0;j<D;j++)
{
NectarSource[i].code[j]=EmployedBee[i].code[j];
}
NectarSource[i].trail=0;
NectarSource[i].trueFit=EmployedBee[i].trueFit;
NectarSource[i].fitness=EmployedBee[i].fitness;
}else
{
NectarSource[i].trail++;
}
}
}
voidCalculateProbabilities()//計算輪盤賭的選擇概率
{
inti;
doublemaxfit;
maxfit=NectarSource[0].fitness;
for(i=1;i<FoodNumber;i++)
{
if(NectarSource[i].fitness>maxfit)
maxfit=NectarSource[i].fitness;
}
for(i=0;i<FoodNumber;i++)
{
NectarSource[i].rfitness=(0.9*(NectarSource[i].fitness/maxfit))+0.1;
}
}
voidsendOnlookerBees()//采蜜蜂與觀察蜂交流信息,觀察蜂更改信息
{
inti,j,t,k;
doubleR_choosed;//被選中的概率
intparam2change;//需要被改變的維數
doubleRij;//[-1,1]之間的隨機數
i=0;
t=0;
while(t<FoodNumber)
{
R_choosed=random(0,1);
if(R_choosed<NectarSource[i].rfitness)//根據被選擇的概率選擇
{
t++;
param2change=(int)random(0,D);
/******選取不等於i的k********/
while(1)
{
k=(int)random(0,FoodNumber);
if(k!=i)
{
break;
}
}
for(j=0;j<D;j++)
{
OnLooker[i].code[j]=NectarSource[i].code[j];
}
/****更新******/
Rij=random(-1,1);
OnLooker[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);
/*******判斷是否越界*******/
if(OnLooker[i].code[param2change]<lb)
{
OnLooker[i].code[param2change]=lb;
}
if(OnLooker[i].code[param2change]>ub)
{
OnLooker[i].code[param2change]=ub;
}
OnLooker[i].trueFit=calculationTruefit(OnLooker[i]);
OnLooker[i].fitness=calculationFitness(OnLooker[i].trueFit);
/****貪婪選擇策略******/
if(OnLooker[i].trueFit<NectarSource[i].trueFit)
{
for(j=0;j<D;j++)
{
NectarSource[i].code[j]=OnLooker[i].code[j];
}
NectarSource[i].trail=0;
NectarSource[i].trueFit=OnLooker[i].trueFit;
NectarSource[i].fitness=OnLooker[i].fitness;
}else
{
NectarSource[i].trail++;
}
}
i++;
if(i==FoodNumber)
{
i=0;
}
}
}
Ⅳ 蜂群演算法屬於初級還是高級
人工蜂群演算法(Artificial Bee Colony, ABC)是由Karaboga於2005年提出的一種新穎的基於群智能的全局優化演算法,版其直觀背景來源於權蜂群的采蜜行為,蜜蜂根據各自的分工進行不同的活動,並實現蜂群信息的共享和交流,從而找到問題的最優解。人工蜂群演算法屬於群智能演算法的一種。
Ⅳ 人工蜂群演算法可以解什麼樣的函數
都是一樣的,為什麼有的會帶上「人工」呢?只是因為這些只能演算法都是「人」仿照動物行為而創造的,所以有時候才會帶上「人工」兩個字。但是指的是一個東西。例如神經網路,也有人喜歡說是人工神經網路
Ⅵ 人工蜂群演算法matlab蜂群種群大小怎麼設定
%/* ABC algorithm coded using MATLAB language */
%/* Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005, motivated by the intelligent behavior of honey bees. */
%/* Referance Papers*/
%/*D. Karaboga, AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION,TECHNICAL REPORT-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department 2005.*/
%/*D. Karaboga, B. Basturk, A powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm, Journal of Global Optimization, Volume:39, Issue:3,pp:459-171, November 2007,ISSN:0925-5001 , doi: 10.1007/s10898-007-9149-x */
%/*D. Karaboga, B. Basturk, On The Performance Of Artificial Bee Colony (ABC) Algorithm, Applied Soft Computing,Volume 8, Issue 1, January 2008, Pages 687-697. */
%/*D. Karaboga, B. Akay, A Comparative Study of Artificial Bee Colony Algorithm, Applied Mathematics and Computation, 214, 108-132, 2009. */
%/*Copyright ?2009 Erciyes University, Intelligent Systems Research Group, The Dept. of Computer Engineering*/
%/*Contact:
%Dervis Karaboga ([email protected] )
%Bahriye Basturk Akay ([email protected])
%*/
clear all
close all
clc
%/* Control Parameters of ABC algorithm*/
NP=20; %/* The number of colony size (employed bees+onlooker bees)*/
FoodNumber=NP/2; %/*The number of food sources equals the half of the colony size*/
limit=100; %/*A food source which could not be improved through "limit" trials is abandoned by its employed bee*/
maxCycle=2500; %/*The number of cycles for foraging {a stopping criteria}*/
%/* Problem specific variables*/
objfun='Sphere'; %cost function to be optimized
D=100; %/*The number of parameters of the problem to be optimized*/
ub=ones(1,D)*100; %/*lower bounds of the parameters. */
lb=ones(1,D)*(-100);%/*upper bound of the parameters.*/
runtime=1;%/*Algorithm can be run many times in order to see its robustness*/
%Foods [FoodNumber][D]; /*Foods is the population of food sources. Each row of Foods matrix is a vector holding D parameters to be optimized. The number of rows of Foods matrix equals to the FoodNumber*/
%ObjVal[FoodNumber]; /*f is a vector holding objective function values associated with food sources */
%Fitness[FoodNumber]; /*fitness is a vector holding fitness (quality) values associated with food sources*/
%trial[FoodNumber]; /*trial is a vector holding trial numbers through which solutions can not be improved*/
%prob[FoodNumber]; /*prob is a vector holding probabilities of food sources (solutions) to be chosen*/
%solution [D]; /*New solution (neighbour) proced by v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) j is a randomly chosen parameter and k is a randomlu chosen solution different from i*/
%ObjValSol; /*Objective function value of new solution*/
%FitnessSol; /*Fitness value of new solution*/
%neighbour, param2change; /*param2change corrresponds to j, neighbour corresponds to k in equation v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij})*/
%GlobalMin; /*Optimum solution obtained by ABC algorithm*/
%GlobalParams[D]; /*Parameters of the optimum solution*/
%GlobalMins[runtime]; /*GlobalMins holds the GlobalMin of each run in multiple runs*/
GlobalMins=zeros(1,runtime);
for r=1:runtime
% /*All food sources are initialized */
%/*Variables are initialized in the range [lb,ub]. If each parameter has different range, use arrays lb[j], ub[j] instead of lb and ub */
Range = repmat((ub-lb),[FoodNumber 1]);
Lower = repmat(lb, [FoodNumber 1]);
Foods = rand(FoodNumber,D) .* Range + Lower;
ObjVal=feval(objfun,Foods);
Fitness=calculateFitness(ObjVal);
%reset trial counters
trial=zeros(1,FoodNumber);
%/*The best food source is memorized*/
BestInd=find(ObjVal==min(ObjVal));
BestInd=BestInd(end);
GlobalMin=ObjVal(BestInd);
GlobalParams=Foods(BestInd,:);
iter=1;
while ((iter <= maxCycle)),
%%%%%%%%% EMPLOYED BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%
for i=1:(FoodNumber)
%/*The parameter to be changed is determined randomly*/
Param2Change=fix(rand*D)+1;
%/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
neighbour=fix(rand*(FoodNumber))+1;
%/*Randomly selected solution must be different from the solution i*/
while(neighbour==i)
neighbour=fix(rand*(FoodNumber))+1;
end;
sol=Foods(i,:);
% /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;
% /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
ind=find(sol<lb);
sol(ind)=lb(ind);
ind=find(sol>ub);
sol(ind)=ub(ind);
%evaluate new solution
ObjValSol=feval(objfun,sol);
FitnessSol=calculateFitness(ObjValSol);
% /*a greedy selection is applied between the current solution i and its mutant*/
if (FitnessSol>Fitness(i)) %/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
Foods(i,:)=sol;
Fitness(i)=FitnessSol;
ObjVal(i)=ObjValSol;
trial(i)=0;
else
trial(i)=trial(i)+1; %/*if the solution i can not be improved, increase its trial counter*/
end;
end;
%%%%%%%%%%%%%%%%%%%%%%%% CalculateProbabilities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%/* A food source is chosen with the probability which is proportioal to its quality*/
%/*Different schemes can be used to calculate the probability values*/
%/*For example prob(i)=fitness(i)/sum(fitness)*/
%/*or in a way used in the metot below prob(i)=a*fitness(i)/max(fitness)+b*/
%/*probability values are calculated by using fitness values and normalized by dividing maximum fitness value*/
prob=(0.9.*Fitness./max(Fitness))+0.1;
%%%%%%%%%%%%%%%%%%%%%%%% ONLOOKER BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
i=1;
t=0;
while(t<FoodNumber)
if(rand<prob(i))
t=t+1;
%/*The parameter to be changed is determined randomly*/
Param2Change=fix(rand*D)+1;
%/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
neighbour=fix(rand*(FoodNumber))+1;
%/*Randomly selected solution must be different from the solution i*/
while(neighbour==i)
neighbour=fix(rand*(FoodNumber))+1;
end;
sol=Foods(i,:);
% /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;
% /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
ind=find(sol<lb);
sol(ind)=lb(ind);
ind=find(sol>ub);
sol(ind)=ub(ind);
%evaluate new solution
ObjValSol=feval(objfun,sol);
FitnessSol=calculateFitness(ObjValSol);
% /*a greedy selection is applied between the current solution i and its mutant*/
if (FitnessSol>Fitness(i)) %/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
Foods(i,:)=sol;
Fitness(i)=FitnessSol;
ObjVal(i)=ObjValSol;
trial(i)=0;
else
trial(i)=trial(i)+1; %/*if the solution i can not be improved, increase its trial counter*/
end;
end;
i=i+1;
if (i==(FoodNumber)+1)
i=1;
end;
end;
%/*The best food source is memorized*/
ind=find(ObjVal==min(ObjVal));
ind=ind(end);
if (ObjVal(ind)<GlobalMin)
GlobalMin=ObjVal(ind);
GlobalParams=Foods(ind,:);
end;
%%%%%%%%%%%% SCOUT BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%/*determine the food sources whose trial counter exceeds the "limit" value.
%In Basic ABC, only one scout is allowed to occur in each cycle*/
ind=find(trial==max(trial));
ind=ind(end);
if (trial(ind)>limit)
Bas(ind)=0;
sol=(ub-lb).*rand(1,D)+lb;
ObjValSol=feval(objfun,sol);
FitnessSol=calculateFitness(ObjValSol);
Foods(ind,:)=sol;
Fitness(ind)=FitnessSol;
ObjVal(ind)=ObjValSol;
end;
fprintf('Ýter=%d ObjVal=%g\n',iter,GlobalMin);
iter=iter+1;
end % End of ABC
GlobalMins(r)=GlobalMin;
end; %end of runs
save all
Ⅶ 人工蜂群演算法適合在srm中應用嗎
蜜蜂是一種群居昆蟲,雖然單個昆蟲的行為極其簡單,但是由單個簡單的個體所組成的群體卻表現出極其復雜的行為。真實的蜜蜂種群能夠在任何環境下,以極高的效率從食物源(花朵)中採集花蜜;同時,它們能適應環境的改變。
蜂群產生群體智慧的最小搜索模型包含基本的三個組成要素:食物源、被僱傭的蜜蜂(employed foragers)和未被僱傭的蜜蜂(unemployed foragers);兩種最為基本的行為模型:為食物源招募(recruit)蜜蜂和放棄(abandon)某個食物源。
(1)食物源:食物源的價值由多方面的因素決定,如:它離蜂巢的遠近,包含花蜜的豐富程度和獲得花蜜的難易程度。使用單一的參數,食物源的「收益率」(profitability),來代表以上各個因素。
(2)被僱用的蜜蜂:也稱引領蜂(Leader),其與所採集的食物源一一對應。引領蜂儲存有某一個食物源的相關信息(相對於蜂巢的距離、方向、食物源的豐富程度等)並且將這些信息以一定的概率與其他蜜蜂分享。
(3)未被僱用的蜜蜂:其主要任務是尋找和開採食物源。有兩種未被僱用的蜜蜂:偵查蜂(Scouter)和跟隨蜂(Follower)。偵察蜂搜索蜂巢附近的新食物源;跟隨蜂等在蜂巢裡面並通過與引領蜂分享相關信息找到食物源。一般情況下,偵察蜂的平均數目是蜂群的5%-20%。
Ⅷ 人工蜂群演算法里太多比喻了,能不能就演算法本身的步驟來講講
直接給你JAVA代碼吧,看的簡單易懂
import java.lang.Math;
public class beeColony {
/* Control Parameters of ABC algorithm*/
int NP=20; /* The number of colony size (employed bees+onlooker bees)*/
int FoodNumber = NP/2; /*The number of food sources equals the half of the colony size*/
int limit = 100; /*A food source which could not be improved through "limit" trials is abandoned by its employed bee*/
int maxCycle = 2500; /*The number of cycles for foraging {a stopping criteria}*/
/* Problem specific variables*/
int D = 100; /*The number of parameters of the problem to be optimized*/
double lb = -5.12; /*lower bound of the parameters. */
double ub = 5.12; /*upper bound of the parameters. lb and ub can be defined as arrays for the problems of which parameters have different bounds*/
int runtime = 30; /*Algorithm can be run many times in order to see its robustness*/
int dizi1[]=new int[10];
double Foods[][]=new double[FoodNumber][D]; /*Foods is the population of food sources. Each row of Foods matrix is a vector holding D parameters to be optimized. The number of rows of Foods matrix equals to the FoodNumber*/
double f[]=new double[FoodNumber]; /*f is a vector holding objective function values associated with food sources */
double fitness[]=new double[FoodNumber]; /*fitness is a vector holding fitness (quality) values associated with food sources*/
double trial[]=new double[FoodNumber]; /*trial is a vector holding trial numbers through which solutions can not be improved*/
double prob[]=new double[FoodNumber]; /*prob is a vector holding probabilities of food sources (solutions) to be chosen*/
double solution[]=new double[D]; /*New solution (neighbour) proced by v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) j is a randomly chosen parameter and k is a randomlu chosen solution different from i*/
double ObjValSol; /*Objective function value of new solution*/
double FitnessSol; /*Fitness value of new solution*/
int neighbour, param2change; /*param2change corrresponds to j, neighbour corresponds to k in equation v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij})*/
double GlobalMin; /*Optimum solution obtained by ABC algorithm*/
double GlobalParams[]=new double[D]; /*Parameters of the optimum solution*/
double GlobalMins[]=new double[runtime];
/*GlobalMins holds the GlobalMin of each run in multiple runs*/
double r; /*a random number in the range [0,1)*/
/*a function pointer returning double and taking a D-dimensional array as argument */
/*If your function takes additional arguments then change function pointer definition and lines calling "...=function(solution);" in the code*/
// typedef double (*FunctionCallback)(double sol[D]);
/*benchmark functions */
// double sphere(double sol[D]);
// double Rosenbrock(double sol[D]);
// double Griewank(double sol[D]);
// double Rastrigin(double sol[D]);
/*Write your own objective function name instead of sphere*/
// FunctionCallback function = &sphere;
/*Fitness function*/
double CalculateFitness(double fun)
{
double result=0;
if(fun>=0)
{
result=1/(fun+1);
}
else
{
result=1+Math.abs(fun);
}
return result;
}
/*The best food source is memorized*/
void MemorizeBestSource()
{
int i,j;
for(i=0;i<FoodNumber;i++)
{
if (f[i]<GlobalMin)
{
GlobalMin=f[i];
for(j=0;j<D;j++)
GlobalParams[j]=Foods[i][j];
}
}
}
/*Variables are initialized in the range [lb,ub]. If each parameter has different range, use arrays lb[j], ub[j] instead of lb and ub */
/* Counters of food sources are also initialized in this function*/
void init(int index)
{
int j;
for (j=0;j<D;j++)
{
r = ( (double)Math.random()*32767 / ((double)32767+(double)(1)) );
Foods[index][j]=r*(ub-lb)+lb;
solution[j]=Foods[index][j];
}
f[index]=calculateFunction(solution);
fitness[index]=CalculateFitness(f[index]);
trial[index]=0;
}
/*All food sources are initialized */
void initial()
{
int i;
for(i=0;i<FoodNumber;i++)
{
init(i);
}
GlobalMin=f[0];
for(i=0;i<D;i++)
GlobalParams[i]=Foods[0][i];
}
void SendEmployedBees()
{
int i,j;
/*Employed Bee Phase*/
for (i=0;i<FoodNumber;i++)
{
/*The parameter to be changed is determined randomly*/
r = ((double) Math.random()*32767 / ((double)(32767)+(double)(1)) );
param2change=(int)(r*D);
/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
neighbour=(int)(r*FoodNumber);
/*Randomly selected solution must be different from the solution i*/
// while(neighbour==i)
// {
// r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
// neighbour=(int)(r*FoodNumber);
// }
for(j=0;j<D;j++)
solution[j]=Foods[i][j];
/*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
solution[param2change]=Foods[i][param2change]+(Foods[i][param2change]-Foods[neighbour][param2change])*(r-0.5)*2;
/*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
if (solution[param2change]<lb)
solution[param2change]=lb;
if (solution[param2change]>ub)
solution[param2change]=ub;
ObjValSol=calculateFunction(solution);
FitnessSol=CalculateFitness(ObjValSol);
/*a greedy selection is applied between the current solution i and its mutant*/
if (FitnessSol>fitness[i])
{
/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
trial[i]=0;
for(j=0;j<D;j++)
Foods[i][j]=solution[j];
f[i]=ObjValSol;
fitness[i]=FitnessSol;
}
else
{ /*if the solution i can not be improved, increase its trial counter*/
trial[i]=trial[i]+1;
}
}
/*end of employed bee phase*/
}
/* A food source is chosen with the probability which is proportioal to its quality*/
/*Different schemes can be used to calculate the probability values*/
/*For example prob(i)=fitness(i)/sum(fitness)*/
/*or in a way used in the metot below prob(i)=a*fitness(i)/max(fitness)+b*/
/*probability values are calculated by using fitness values and normalized by dividing maximum fitness value*/
void CalculateProbabilities()
{
int i;
double maxfit;
maxfit=fitness[0];
for (i=1;i<FoodNumber;i++)
{
if (fitness[i]>maxfit)
maxfit=fitness[i];
}
for (i=0;i<FoodNumber;i++)
{
prob[i]=(0.9*(fitness[i]/maxfit))+0.1;
}
}
void SendOnlookerBees()
{
int i,j,t;
i=0;
t=0;
/*onlooker Bee Phase*/
while(t<FoodNumber)
{
r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
if(r<prob[i]) /*choose a food source depending on its probability to be chosen*/
{
t++;
/*The parameter to be changed is determined randomly*/
r = ((double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
param2change=(int)(r*D);
/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
neighbour=(int)(r*FoodNumber);
/*Randomly selected solution must be different from the solution i*/
while(neighbour == i)
{
//System.out.println(Math.random()*32767+" "+32767);
r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
neighbour=(int)(r*FoodNumber);
}
for(j=0;j<D;j++)
solution[j]=Foods[i][j];
/*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
solution[param2change]=Foods[i][param2change]+(Foods[i][param2change]-Foods[neighbour][param2change])*(r-0.5)*2;
/*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
if (solution[param2change]<lb)
solution[param2change]=lb;
if (solution[param2change]>ub)
solution[param2change]=ub;
ObjValSol=calculateFunction(solution);
FitnessSol=CalculateFitness(ObjValSol);
/*a greedy selection is applied between the current solution i and its mutant*/
if (FitnessSol>fitness[i])
{
/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
trial[i]=0;
for(j=0;j<D;j++)
Foods[i][j]=solution[j];
f[i]=ObjValSol;
fitness[i]=FitnessSol;
}
else
{ /*if the solution i can not be improved, increase its trial counter*/
trial[i]=trial[i]+1;
}
} /*if */
i++;
if (i==FoodNumber-1)
i=0;
}/*while*/
/*end of onlooker bee phase */
}
/*determine the food sources whose trial counter exceeds the "limit" value. In Basic ABC, only one scout is allowed to occur in each cycle*/
void SendScoutBees()
{
int maxtrialindex,i;
maxtrialindex=0;
for (i=1;i<FoodNumber;i++)
{
if (trial[i]>trial[maxtrialindex])
maxtrialindex=i;
}
if(trial[maxtrialindex]>=limit)
{
init(maxtrialindex);
}
}
double calculateFunction(double sol[])
{
return Rastrigin (sol);
}
double sphere(double sol[])
{
int j;
double top=0;
for(j=0;j<D;j++)
{
top=top+sol[j]*sol[j];
}
return top;
}
double Rosenbrock(double sol[])
{
int j;
double top=0;
for(j=0;j<D-1;j++)
{
top=top+100*Math.pow((sol[j+1]-Math.pow((sol[j]),(double)2)),(double)2)+Math.pow((sol[j]-1),(double)2);
}
return top;
}
double Griewank(double sol[])
{
int j;
double top1,top2,top;
top=0;
top1=0;
top2=1;
for(j=0;j<D;j++)
{
top1=top1+Math.pow((sol[j]),(double)2);
top2=top2*Math.cos((((sol[j])/Math.sqrt((double)(j+1)))*Math.PI)/180);
}
top=(1/(double)4000)*top1-top2+1;
return top;
}
double Rastrigin(double sol[])
{
int j;
double top=0;
for(j=0;j<D;j++)
{
top=top+(Math.pow(sol[j],(double)2)-10*Math.cos(2*Math.PI*sol[j])+10);
}
return top;
}
}
使用方法是:
public class test {
static beeColony bee=new beeColony();
public static void main(String[] args) {
int iter=0;
int run=0;
int j=0;
double mean=0;
//srand(time(NULL));
for(run=0;run<bee.runtime;run++)
{
bee.initial();
bee.MemorizeBestSource();
for (iter=0;iter<bee.maxCycle;iter++)
{
bee.SendEmployedBees();
bee.CalculateProbabilities();
bee.SendOnlookerBees();
bee.MemorizeBestSource();
bee.SendScoutBees();
}
for(j=0;j<bee.D;j++)
{
//System.out.println("GlobalParam[%d]: %f\n",j+1,GlobalParams[j]);
System.out.println("GlobalParam["+(j+1)+"]:"+bee.GlobalParams[j]);
}
//System.out.println("%d. run: %e \n",run+1,GlobalMin);
System.out.println((run+1)+".run:"+bee.GlobalMin);
bee.GlobalMins[run]=bee.GlobalMin;
mean=mean+bee.GlobalMin;
}
mean=mean/bee.runtime;
//System.out.println("Means of %d runs: %e\n",runtime,mean);
System.out.println("Means of "+bee.runtime+"runs: "+mean);
}
}
Ⅸ 求 人工蜂群演算法用於無線感測器網路路由協議的模擬代碼
我有個基於tinyos的nesc 語言的代碼模擬,不知道你需要不,另外好像這個蟻群演算法好像沒有太大的研究意義。PS.這個不是我的電話號碼
Ⅹ 求人工蜂群演算法的c程序源代碼``````謝謝各位大神了``````
/* ABC algorithm coded using C programming language */
/* Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005,
motivated by the intelligent behavior of honey bees. */
/* Referance Papers*/
/*D. Karaboga, AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION,TECHNICAL REPORT-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department 2005.*/
/*D. Karaboga, B. Basturk, A powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm, Journal of Global Optimization, Volume:39, Issue:3,pp:459-171, November 2007,ISSN:0925-5001 , doi: 10.1007/s10898-007-9149-x */
/*D. Karaboga, B. Basturk, On The Performance Of Artificial Bee Colony (ABC) Algorithm, Applied Soft Computing,Volume 8, Issue 1, January 2008, Pages 687-697. */
/*D. Karaboga, B. Akay, A Comparative Study of Artificial Bee Colony Algorithm, Applied Mathematics and Computation, 214, 108-132, 2009. */
/*Copyright © 2009 Erciyes University, Intelligent Systems Research Group, The Dept. of Computer Engineering*/
/*Contact:
Dervis Karaboga ([email protected] )
Bahriye Basturk Akay ([email protected])
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <conio.h>
#include <time.h>
/* Control Parameters of ABC algorithm*/
#define NP 20 /* The number of colony size (employed bees+onlooker bees)*/
#define FoodNumber NP/2 /*The number of food sources equals the half of the colony size*/
#define limit 100 /*A food source which could not be improved through "limit" trials is abandoned by its employed bee*/
#define maxCycle 2500 /*The number of cycles for foraging {a stopping criteria}*/
/* Problem specific variables*/
#define D 100 /*The number of parameters of the problem to be optimized*/
#define lb -100 /*lower bound of the parameters. */
#define ub 100 /*upper bound of the parameters. lb and ub can be defined as arrays for the problems of which parameters have different bounds*/
#define runtime 30 /*Algorithm can be run many times in order to see its robustness*/
double Foods[FoodNumber][D]; /*Foods is the population of food sources. Each row of Foods matrix is a vector holding D parameters to be optimized. The number of rows of Foods matrix equals to the FoodNumber*/
double f[FoodNumber]; /*f is a vector holding objective function values associated with food sources */
double fitness[FoodNumber]; /*fitness is a vector holding fitness (quality) values associated with food sources*/
double trial[FoodNumber]; /*trial is a vector holding trial numbers through which solutions can not be improved*/
double prob[FoodNumber]; /*prob is a vector holding probabilities of food sources (solutions) to be chosen*/
double solution [D]; /*New solution (neighbour) proced by v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) j is a randomly chosen parameter and k is a randomlu chosen solution different from i*/
double ObjValSol; /*Objective function value of new solution*/
double FitnessSol; /*Fitness value of new solution*/
int neighbour, param2change; /*param2change corrresponds to j, neighbour corresponds to k in equation v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij})*/
double GlobalMin; /*Optimum solution obtained by ABC algorithm*/
double GlobalParams[D]; /*Parameters of the optimum solution*/
double GlobalMins[runtime]; /*GlobalMins holds the GlobalMin of each run in multiple runs*/
double r; /*a random number in the range [0,1)*/
/*a function pointer returning double and taking a D-dimensional array as argument */
/*If your function takes additional arguments then change function pointer definition and lines calling "...=function(solution);" in the code*/
typedef double (*FunctionCallback)(double sol[D]);
/*benchmark functions */
double sphere(double sol[D]);
double Rosenbrock(double sol[D]);
double Griewank(double sol[D]);
double Rastrigin(double sol[D]);
/*Write your own objective function name instead of sphere*/
FunctionCallback function = &sphere;
/*Fitness function*/
double CalculateFitness(double fun)
{
double result=0;
if(fun>=0)
{
result=1/(fun+1);
}
else
{
result=1+fabs(fun);
}
return result;
}
/*The best food source is memorized*/
void MemorizeBestSource()
{
int i,j;
for(i=0;i<FoodNumber;i++)
{
if (f[i]<GlobalMin)
{
GlobalMin=f[i];
for(j=0;j<D;j++)
GlobalParams[j]=Foods[i][j];
}
}
}
/*Variables are initialized in the range [lb,ub]. If each parameter has different range, use arrays lb[j], ub[j] instead of lb and ub */
/* Counters of food sources are also initialized in this function*/
void init(int index)
{
int j;
for (j=0;j<D;j++)
{
r = ( (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
Foods[index][j]=r*(ub-lb)+lb;
solution[j]=Foods[index][j];
}
f[index]=function(solution);
fitness[index]=CalculateFitness(f[index]);
trial[index]=0;
}
/*All food sources are initialized */
void initial()
{
int i;
for(i=0;i<FoodNumber;i++)
{
init(i);
}
GlobalMin=f[0];
for(i=0;i<D;i++)
GlobalParams[i]=Foods[0][i];
}
void SendEmployedBees()
{
int i,j;
/*Employed Bee Phase*/
for (i=0;i<FoodNumber;i++)
{
/*The parameter to be changed is determined randomly*/
r = ((double)rand() / ((double)(RAND_MAX)+(double)(1)) );
param2change=(int)(r*D);
/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
r = ( (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
neighbour=(int)(r*FoodNumber);
/*Randomly selected solution must be different from the solution i*/
while(neighbour==i)
{
r = ( (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
neighbour=(int)(r*FoodNumber);
}
for(j=0;j<D;j++)
solution[j]=Foods[i][j];
/*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
r = ( (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
solution[param2change]=Foods[i][param2change]+(Foods[i][param2change]-Foods[neighbour][param2change])*(r-0.5)*2;
/*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
if (solution[param2change]<lb)
solution[param2change]=lb;
if (solution[param2change]>ub)
solution[param2change]=ub;
ObjValSol=function(solution);
FitnessSol=CalculateFitness(ObjValSol);
/*a greedy selection is applied between the current solution i and its mutant*/
if (FitnessSol>fitness[i])
{
/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
trial[i]=0;
for(j=0;j<D;j++)
Foods[i][j]=solution[j];
f[i]=ObjValSol;
fitness[i]=FitnessSol;
}
else
{ /*if the solution i can not be improved, increase its trial counter*/
trial[i]=trial[i]+1;
}
}
/*end of employed bee phase*/
}
/* A food source is chosen with the probability which is proportioal to its quality*/
/*Different schemes can be used to calculate the probability values*/
/*For example prob(i)=fitness(i)/sum(fitness)*/
/*or in a way used in the metot below prob(i)=a*fitness(i)/max(fitness)+b*/
/*probability values are calculated by using fitness values and normalized by dividing maximum fitness value*/
void CalculateProbabilities()
{
int i;
double maxfit;
maxfit=fitness[0];
for (i=1;i<FoodNumber;i++)
{
if (fitness[i]>maxfit)
maxfit=fitness[i];
}
for (i=0;i<FoodNumber;i++)
{
prob[i]=(0.9*(fitness[i]/maxfit))+0.1;
}
}
void SendOnlookerBees()
{
int i,j,t;
i=0;
t=0;
/*onlooker Bee Phase*/
while(t<FoodNumber)
{
r = ( (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
if(r<prob[i]) /*choose a food source depending on its probability to be chosen*/
{
t++;
/*The parameter to be changed is determined randomly*/
r = ((double)rand() / ((double)(RAND_MAX)+(double)(1)) );
param2change=(int)(r*D);
/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
r = ( (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
neighbour=(int)(r*FoodNumber);
/*Randomly selected solution must be different from the solution i*/
while(neighbour==i)
{
r = ( (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
neighbour=(int)(r*FoodNumber);
}
for(j=0;j<D;j++)
solution[j]=Foods[i][j];
/*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
r = ( (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
solution[param2change]=Foods[i][param2change]+(Foods[i][param2change]-Foods[neighbour][param2change])*(r-0.5)*2;
/*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
if (solution[param2change]<lb)
solution[param2change]=lb;
if (solution[param2change]>ub)
solution[param2change]=ub;
ObjValSol=function(solution);
FitnessSol=CalculateFitness(ObjValSol);
/*a greedy selection is applied between the current solution i and its mutant*/
if (FitnessSol>fitness[i])
{
/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
trial[i]=0;
for(j=0;j<D;j++)
Foods[i][j]=solution[j];
f[i]=ObjValSol;
fitness[i]=FitnessSol;
}
else
{ /*if the solution i can not be improved, increase its trial counter*/
trial[i]=trial[i]+1;
}
} /*if */
i++;
if (i==FoodNumber-1)
i=0;
}/*while*/
/*end of onlooker bee phase */
}
/*determine the food sources whose trial counter exceeds the "limit" value. In Basic ABC, only one scout is allowed to occur in each cycle*/
void SendScoutBees()
{
int maxtrialindex,i;
maxtrialindex=0;
for (i=1;i<FoodNumber;i++)
{
if (trial[i]>trial[maxtrialindex])
maxtrialindex=i;
}
if(trial[maxtrialindex]>=limit)
{
init(maxtrialindex);
}
}
/*Main program of the ABC algorithm*/
int main()
{
int iter,run,j;
double mean;
mean=0;
srand(time(NULL));
for(run=0;run<runtime;run++)
{
initial();
MemorizeBestSource();
for (iter=0;iter<maxCycle;iter++)
{
SendEmployedBees();
CalculateProbabilities();
SendOnlookerBees();
MemorizeBestSource();
SendScoutBees();
}
for(j=0;j<D;j++)
{
printf("GlobalParam[%d]: %f\n",j+1,GlobalParams[j]);
}
printf("%d. run: %e \n",run+1,GlobalMin);
GlobalMins[run]=GlobalMin;
mean=mean+GlobalMin;
}
mean=mean/runtime;
printf("Means of %d runs: %e\n",runtime,mean);
getch();
}
double sphere(double sol[D])
{
int j;
double top=0;
for(j=0;j<D;j++)
{
top=top+sol[j]*sol[j];
}
return top;
}
double Rosenbrock(double sol[D])
{
int j;
double top=0;
for(j=0;j<D-1;j++)
{
top=top+100*pow((sol[j+1]-pow((sol[j]),(double)2)),(double)2)+pow((sol[j]-1),(double)2);
}
return top;
}
double Griewank(double sol[D])
{
int j;
double top1,top2,top;
top=0;
top1=0;
top2=1;
for(j=0;j<D;j++)
{
top1=top1+pow((sol[j]),(double)2);
top2=top2*cos((((sol[j])/sqrt((double)(j+1)))*M_PI)/180);
}
top=(1/(double)4000)*top1-top2+1;
return top;
}
double Rastrigin(double sol[D])
{
int j;
double top=0;
for(j=0;j<D;j++)
{
top=top+(pow(sol[j],(double)2)-10*cos(2*M_PI*sol[j])+10);
}
return top;
}