電子技術文獻
1. 關於電子技術論文300字
現代電力電子技術淺探
電力電子技術是研究採用電力電子器件實現對電能的控制和變換的科學,是介於電氣工程三大主要領域--電力、電子和控制之間的交叉學科,在電力、工業、交通、航空航天等領域具有廣泛的應用。電力電子技術的應用已經深入到工業生產和社會生活的各個方面,成為傳統產業和高新技術領域不可缺少的關鍵技術,可以有效地節約能源。
一、電力電子技術的發展
現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始於五十年代末六十年代初的硅整流器件,其發展先後經歷了整流器時代、逆變器時代和變頻器時代,並促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流於一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。
1、整流器時代
大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的製造硅整流器的半導體廠家就是那時的產物。
2、逆變器時代
七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。
3、變頻器時代
進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而後絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。
二、電力電子技術的應用
1、一般工業
工業中大量應用各種交直流電動機。直流電動機有良好的調速性能,給其供電的可控整流電源或直流斬波電源都是電力電子裝置。近年來,由於電力電子變頻技術的迅速發展,使得交流電機的調速性能可與直流電機相媲美,交流調速技術大量應用並占據主導地位。大至數千kW的各種軋鋼機,小到幾百W的數控機床的伺服電機,以及礦山牽引等場合都廣泛採用電力電子交直流調速技術。一些對調速性能要求不高的大型鼓風機等近年來也採用了變頻裝置,以達到節能的目的。還有些不調速的電機為了避免起動時的電流沖擊而採用了軟起動裝置,這種軟起動裝置也是電力電子裝置。電化學工業大量使用直流電源,電解鋁、電解食鹽水等都需要大容量整流電源。電鍍裝置也需要整流電源。電力電子技術還大量用於冶金工業中的高頻、中頻感應加熱電源、淬火電源及直流電弧爐電源等場合。
2、交通運輸
電氣化鐵道中廣泛採用電力電子技術。電氣機車中的直流機車中採用整流裝置,交流機車採用變頻裝置。直流斬波器也廣泛用於鐵道車輛。在未來的磁懸浮列車中,電力電子技術更是一項關鍵技術。除牽引電機傳動外,車輛中的各種輔助電源也都離不開電力電子技術。電動汽車的電機靠電力電子裝置進行電力變換和驅動控制,其蓄電池的充電也離不開電力電子裝置。一台高級汽車中需要許多控制電機,它們也要靠變頻器和斬波器驅動並控制。飛機、船舶需要很多不同要求的電源,因此航空和航海都離不開電力電子技術。如果把電梯也算做交通運輸,那麼它也需要電力電子技術。以前的電梯大都採用直流調速系統,而近年來交流變頻調速已成為主流。
3、電力系統
電力電子技術在電力系統中有著非常廣泛的應用。據估計,發達國家在用戶最終使用的電能中,有60%以上的電能至少經過一次以上電力電子變流裝置的處理。電力系統在通向現代化的進程中,電力電子技術是關鍵技術之一。可以毫不誇張地說,如果離開電力電子技術,電力系統的現代化就是不可想像的。直流輸電在長距離、大容量輸電時有很大的優勢,其送電端的整流閥和受電端的逆變閥都採用晶閘管變流裝置。近年發展起來的柔性交流輸電(FACTS)也是依靠電力電子裝置才得以實現的。無功補償和諧波抑制對電力系統有重要的意義。晶閘管控制電抗器(TCR)、晶閘管投切電容器(TSC)都是重要的無功補償裝置。近年來出現的靜止無功發生器(SVG)、有源電力濾波器(APF)等新型電力電子裝置具有更為優越的無功功率和諧波補償的性能。在配電網系統,電力電子裝置還可用於防止電網瞬時停電、瞬時電壓跌落、閃變等,以進行電能質量控制,改善供電質量。
在變電所中,給操作系統提供可靠的交直流操作電源,給蓄電池充電等都需要電力電子裝置。
4、電子裝置用電源
各種電子裝置一般都需要不同電壓等級的直流電源供電。通信設備中的程式控制交換機所用的直流電源以前用晶閘管整流電源,現在已改為採用全控型器件的高頻開關電源。大型計算機所需的工作電源、微型計算機內部的電源現在也都採用高頻開關電源。在各種電子裝置中,以前大量採用線性穩壓電源供電,由於高頻開關電源體積小、重量輕、效率高,現在已逐漸取代了線性電源。因為各種信息技術裝置都需要電力電子裝置提供電源,所以可以說信息電子技術離不開電力電子技術。
5、家用電器
照明在家用電器中佔有十分突出的地位。由於電力電子照明電源體積小、發光效率高、可節省大量能源,通常被稱為「節能燈」,它正在逐步取代傳統的白熾燈和日光燈。變頻空調器是家用電器中應用電力電子技術的典型例子。電視機、音響設備、家用計算機等電子設備的電源部分也都需要電力電子技術。此外,有些洗衣機、電冰箱、微波爐等電器也應用了電力電子技術。電力電子技術廣泛用於家用電器使得它和我們的生活變得十分貼近。
6、其他
不間斷電源(UPS)在現代社會中的作用越來越重要,用量也越來越大,在電力電子產品中已佔有相當大的份額。航天飛行器中的各種電子儀器需要電源,載人航天器中為了人的生存和工作,也離不開各種電源,這些都必需採用電力電子技術。傳統的發電方式是火力發電、水力發電以及後來興起的核能發電。能源危機後,各種新能源、可再生能源及新型發電方式越來越受到重視。其中太陽能發電、風力發電的發展較快,燃料電池更是備受關注。太陽能發電和風力發電受環境的制約,發出的電力質量較差,常需要儲能裝置緩沖,需要改善電能質量,這就需要電力電子技術。當需要和電力系統聯網時,也離不開電力電子技術。為了合理地利用水力發電資源,近年來抽水儲能發電站受到重視。其中的大型電動機的起動和調速都需要電力電子技術。超導儲能是未來的一種儲能方式,它需要強大的直流電源供電,這也離不開電力電子技術。核聚變反應堆在產生強大磁場和注入能量時,需要大容量的脈沖電源,這種電源就是電力電子裝置。科學實驗或某些特殊場合,常常需要一些特種電源,這也是電力電子技術的用武之地。以前電力電子技術的應用偏重於中、大功率。現在,在1kW以下,甚至幾十W以下的功率范圍內,電力電子技術的應用也越來越廣,其地位也越來越重要。這已成為一個重要的發展趨勢,值得引起人們的注意。
總之,電力電子技術的應用范圍十分廣泛。從人類對宇宙和大自然的探索,到國民經濟的各個領域,再到我們的衣食住行,到處都能感受到電力電子技術的存在和巨大魅力。這也激發了一代又一代的學者和工程技術人員學習、研究電力電子技術並使其飛速發展。電力電子裝置提供給負載的是各種不同的直流電源、恆頻交流電源和變頻交流電源,因此也可以說,電力電子技術研究的也就是電源技術。電力電子技術對節省電能有重要意義。特別在大型風機、水泵採用變頻調速方面,在使用量十分龐大的照明電源等方面,電力電子技術的節能效果十分顯著,因此它也被稱為是節能技術。
2. 電子技術畢業論文
全文地址 http://www.lwenwang.cn/html/data/769.htm
摘要:簡述了生物感測器尤其是微生物感測器近年來在發酵工業及環境監測領域中的研究與應用,對其發展前景及市場化作了預測及展望。生物電極是以固定化生物體組成作為分子識別元件的敏感材料,與氧電極、膜電極和燃料電極等構成生物感測器,在發酵工業、環境監測、食品監測、臨床醫學等方面得到廣泛的應用。生物感測器專一性好、易操作、設備簡單、測量快速准確、適用范圍廣。隨著固定化技術的發展,生物感測器在市場上具有極強的競爭力。
關鍵詞:生物感測器;發酵工業;環境監測。
一、 引言
從1962年,Clark和Lyons最先提出生物感測器的設想距今已有40 年。生物感測器在發酵工藝、環境監測、食品工程、臨床醫學、軍事及軍事醫學等方面得到了深度重視和廣泛應用。在最初15年裡,生物感測器主要是以研製酶電極製作的生物感測器為主,但是由於酶的價格昂貴並不夠穩定,因此以酶作為敏感材料的感測器,其應用受到一定的限制。
近些年來,微生物固定化技術的不斷發展,產生了微生物電極。微生物電極以微生物活體作為分子識別元件,與酶電極相比有其獨到之處。它可以克服價格昂貴、提取困難及不穩定等弱點。此外,還可以同時利用微生物體內的輔酶處理復雜反應。而目前,光纖生物感測器的應用也越來越廣泛。而且隨著聚合酶鏈式反應技術(PCR)的發展,應
用PCR的DNA生物感測器也越來越多。
二、 研究現狀及主要應用領域
1、 發酵工業
各種生物感測器中,微生物感測器最適合發酵工業的測定。因為發酵過程中常存在對酶的干擾物質,並且發酵液往往不是清澈透明的,不適用於光譜等方法測定。而應用微生物感測器則極有可能消除干擾,並且不受發酵液混濁程度的限制。同時,由於發酵工業是大規模的生產,微生物感測器其成本低設備簡單的特點使其具有極大的優勢。
(1). 原材料及代謝產物的測定
微生物感測器可用於原材料如糖蜜、乙酸等的測定,代謝產物如頭孢黴素、谷氨酸、甲酸、甲烷、醇類、青黴素、乳酸等的測定。測量的原理基本上都是用適合的微生物電極與氧電極組成,利用微生物的同化作用耗氧,通過測量氧電極電流的變化量來測量氧氣的減少量,從而達到測量底物濃度的目的。
在各種原材料中葡萄糖的測定對過程式控制制尤其重要,用熒光假單胞菌(Psoudomonas fluorescens)代謝消耗葡萄糖的作用,通過氧電極進行檢測,可以估計葡萄糖的濃度。這種微生物電極和葡萄糖酶電極型相比,測定結果是類似的,而微生物電極靈敏度高,重復實用性好,而且不必使用昂貴的葡萄糖酶。
當乙酸用作碳源進行微生物培養時,乙酸含量高於某一濃度會抑制微生物的生長,因此需要在線測定。用固定化酵母(Trichosporon brassicae),透氣膜和氧電極組成的微生物感測器可以測定乙酸的濃度。
此外,還有用大腸桿菌(E.coli)組合二氧化碳氣敏電極,可以構成測定谷氨酸的微生物感測器,將檸檬酸桿菌完整細胞固定化在膠原蛋白膜內,由細菌—膠原蛋白膜反應器和組合式玻璃電極構成的微生物感測器可應用於發酵液中頭孢酶素的測定等等。
(2). 微生物細胞總數的測定
在發酵控制方面,一直需要直接測定細胞數目的簡單而連續的方法。人們發現在陽極表面,細菌可以直接被氧化並產生電流。這種電化學系統已應用於細胞數目的測定,其結果與傳統的菌斑計數法測細胞數是相同的[1]。
(3). 代謝試驗的鑒定
傳統的微生物代謝類型的鑒定都是根據微生物在某種培養基上的生長情況進行的。這些實驗方法需要較長的培養時間和專門的技術。微生物對底物的同化作用可以通過其呼吸活性進行測定。用氧電極可以直接測量微生物的呼吸活性。因此,可以用微生物感測器來測定微生物的代謝特徵。這個系統已用於微生物的簡單鑒定、微生物培養基的選擇、微生物酶活性的測定、廢水中可被生物降解的物質估計、用於廢水處理的微生物選擇、活性污泥的同化作用試驗、生物降解物的確定、微生物的保存方法選擇等[2]。
2、 環境監測
(1). 生化需氧量的測定
生化需氧量(biochemical oxygen demand –BOD)的測定是監測水體被有機物污染狀況的最常用指標。常規的BOD測定需要5天的培養期,操作復雜、重復性差、耗時耗力、干擾性大,不宜現場監測,所以迫切需要一種操作簡單、快速准確、自動化程度高、適用廣的新方法來測定。目前,有研究人員分離了兩種新的酵母菌種SPT1和SPT2,並將其固定在玻璃碳極上以構成微生物感測器用於測量BOD,其重復性在±10%以內。將該感測器用於測量紙漿廠污水中BOD的測定,其測量最小值可達2 mg/l,所用時間為5min[3]。還有一種新的微生物感測器,用耐高滲透壓的酵母菌種作為敏感材料,在高滲透壓下可以正常工作。並且其菌株可長期乾燥保存,浸泡後即恢復活性,為海水中BOD的測定提供了快捷簡便的方法[4]。
除了微生物感測器,還有一種光纖生物感測器已經研製出來用於測定河水中較低的BOD值。該感測器的反應時間是15min,最適工作條件為30°C,pH=7。這個感測器系統幾乎不受氯離子的影響(在1000mg/l范圍內),並且不被重金屬(Fe3+、Cu2+、Mn2+、Cr3+、Zn2+)所影響。該感測器已經應用於河水BOD的測定,並且獲得了較好的結果[4]。
現在有一種將BOD生物感測器經過光處理(即以TiO2作為半導體,用6 W燈照射約4min)後,靈敏度大大提高,很適用於河水中較低BOD的測量[5]。同時,一種緊湊的光學生物感測器已經發展出來用於同時測量多重樣品的BOD值。它使用三對發光二極體和硅光電二極體,假單胞細菌(Pseudomonas fluorescens)用光致交聯的樹脂固定在反應器的底層,該測量方法既迅速又簡便,在4℃下可使用六周,已經用於工廠廢水處理的過程中[5]。
(2). 各種污染物的測定
常用的重要污染指標有氨、亞硝酸鹽、硫化物、磷酸鹽、致癌物質與致變物質、重金屬離子、酚類化合物、表面活性劑等物質的濃度。目前已經研製出了多種測量各類污染物的生物感測器並已投入實際應用中了。
測量氨和硝酸鹽的微生物感測器,多是用從廢水處理裝置中分離出來的硝化細菌和氧電極組合構成。目前有一種微生物感測器可以在黑暗和有光的條件下測量硝酸鹽和亞硝酸鹽(NOx-),它在鹽環境下的測量使得它可以不受其他種類的氮的氧化物的影響。用它對河口的NOx-進行了測量,其效果較好[6]。
硫化物的測定是用從硫鐵礦附近酸性土壤中分離篩選得到的專性、自養、好氧性氧化硫硫桿菌製成的微生物感測器。在pH=2.5、31℃時一周測量200餘次,活性保持不變,兩周後活性降低20%。感測器壽命為7天,其設備簡單,成本低,操作方便。目前還有用一種光微生物電極測硫化物含量,所用細菌是Chromatium.SP,與氫電極連接構成[7]。
最近科學家們在污染區分離出一種能夠發熒光的細菌,此種細菌含有熒光基因,在污染源的刺激下能夠產生熒光蛋白,從而發出熒光。可以通過遺傳工程的方法將這種基因導入合適的細菌內,製成微生物感測器,用於環境監測。現在已經將熒光素酶導入大腸桿菌(E.coli)中,用來檢測砷的有毒化合物[8]。
水體中酚類和表面活性劑的濃度測定已經有了很大的發展。目前,有9種革蘭氏陰性細菌從西西伯利亞石油盆地的土壤中分離出來,以酚作為唯一的碳源和能源。這些菌種可以提高生物感測器的感受器部分的靈敏度。它對酚的監測極限為5 ´10-9mol。該感測器工作的最適條件為:pH=7.4、35℃,連續工作時間為30h[9]。還有一種假單胞菌屬(Pseudomonas rathonis)製成的測量表面活性劑濃度的電流型生物感測器,將微生物細胞固定在凝膠(瓊脂、瓊脂糖和海藻酸鈣鹽)和聚乙醇膜上,可以用層析試紙GF/A,或者是谷氨酸醛引起的微生物細胞在凝膠中的交聯,長距離的保持它們在高濃度表面活性劑檢測中的活性和生長力。該感測器能在測量結束後很快的恢復敏感元件的活性[10]。
還有一種電流式生物感測器,用於測定有機磷殺蟲劑,使用的是人造酶。利用有機磷殺蟲劑水解酶,對硝基酚和二乙基酚的測量極限為100´10-9mol,在40℃只要4min[11]。還有一種新發展起來的磷酸鹽生物感測器,使用丙酮酸氧化酶G,與自動系統CL-FIA台式電腦結合,可以檢測(32~96)´10-9mol的磷酸鹽,在25°C下可以使用兩周以上,重復性高[12]。
最近,有一種新型的微生物感測器,用細菌細胞作為生物組成部分,測定地表水中壬基酚(nonyl-phenol etoxylate --NP-80E)的含量。用一個電流型氧電極作感測器,微生物細胞固定在氧電極上的透析膜上,其測量原理是測量毛孢子菌屬(Trichosporum grablata)細胞的呼吸活性。該生物感測器的反應時間為15~20min,壽命為7~10天(用於連續測定時)。在濃度范圍0.5~6.0mg/l內,電信號與NP-80E濃度呈線性關系,很適合於污染的地表水中分子表面活性劑的檢測[13]。
除此之外,污水中重金屬離子濃度的測定也是不容忽視的。目前已經成功設計了一個完整的,基於固定化微生物和生物體發光測量技術上的重金屬離子生物有效性測定的監測和分析系統。將弧菌屬細菌(Vibrio fischeri)體內的一個操縱子在一個銅誘導啟動子的控制下導入產鹼桿菌屬細菌(Alcaligenes eutrophus (AE1239))中,細菌在銅離子的誘導下發光,發光程度與離子濃度成正比。將微生物和光纖一起包埋在聚合物基質中,可以獲得靈敏度高、選擇性好、測量范圍廣、儲藏穩定性強的生物感測器。目前,這種微生物感測器可以達到最低測量濃度1´10-9mol[14]。
還有一種專門測量銅離子的電流型微生物感測器。它用酒釀酵母(Saccharomyces cerevisiae)重組菌株作為生物元件,這些菌株帶有酒釀酵母CUP1基因上的銅離子誘導啟動子與大腸桿菌lacZ基因的融合體。其工作原理,首先是CUP1啟動子被Cu2+誘導,隨後乳糖被用作底物進行測量。如果Cu2+存在於溶液中,這些重組體細菌就可以利用乳糖作為碳源,這將導致這些好氧細胞需氧量的改變。該生物感測器可以在濃度范圍(0.5~2)´10-3mol范圍內測定CuSO4溶液。目前已經將各類金屬離子誘導啟動子轉入大腸桿菌中,使得大腸桿菌會在含有各種金屬離子的的溶液中出現發光反應。根據它發光的強度可以測定重金屬離子的濃度,其測量范圍可以從納摩爾到微摩爾,所需時間為60~100min[15][16]。
用於測量污水中鋅濃度的生物感測器也已經研製成功,使用嗜鹼性細菌Alcaligenes cutrophus,並用於對污水中鋅的濃度和生物有效性進行測量,其結果令人滿意[17]。
估測河口出水流污染情況的海藻感測器是由一種螺旋藻屬藍細菌( cyanobacterium Spirlina subsalsa)和一個氣敏電極構成的。通過監測光合作用被抑制的程度來估測由於環境污染物的存在而引起水的毒性變化。以標准天然水為介質,對三種主要污染物(重金屬、除草劑、氨基甲酸鹽殺蟲劑)的不同濃度進行了測定,均可監測到它們的有毒反應,重復性和再生性都很高[18]。
近來由於聚合酶鏈式反應技術(PCR)的迅猛發展及其在環境監測方面的廣泛應用,不少科學家開始著手於將它與生物感測器技術結合應用。有一種應用PCR技術的DNA壓電生物感測器,可以測定一種特殊的細菌毒素。將生物素醯化的探針固定在裝有鏈酶抗生素鉑金錶面的石英晶體上,用1´10-6mol的鹽酸可以使循環式測量在同一晶體表面進行。用細菌中提取的DNA樣品進行同樣的雜交反應並由PCR放大,產物為氣單胞菌屬(Aeromonas hydrophila)的一種特殊基因片斷。這種壓電生物感測器可以鑒別樣品中是否含有這種基因,這為從水樣中檢測是否含帶有這種病原的各種氣單胞菌提供了可能[19]。
還有一種通道生物感測器可以檢測浮游植物和水母等生物體產生的腰鞭毛蟲神經毒素等毒性物質,目前已經能夠測量在一個浮游生物細胞內含有的極微量的PSP毒素[20]。DNA感測器也在迅速的得到應用,目前有一種小型化DNA生物感測器,能將DNA識別信號轉換為電信號,用於測量水樣中隱孢子和其他水源傳染體。該感測器著重於改進核酸的識別作用和加強該感測器的特異性和靈敏性,並尋求將雜交信號轉化為有用信號的新方法,目前研究工作為識別裝置和轉換裝置的一體化[21]。
3. 關於<電子技術在汽車上的應用>這篇論文的參考文獻有哪些
提供一些關於《電子技術在汽車上的應用》論文的參考文獻,供參考。
[1] 劉艷梅. 電子技術在現代汽車上的發展與應用[J]. 中國科技信息, 2006,(01) .
[2] 何玉軍. 國內外汽車電子技術應用現狀[J]. 電子產品世界, 2000,(05) .
[3] 孫汯. 現代信息電子技術在汽車上的應用和發展[J]. 上海汽車, 2001,(10) .
[4] 邊明遠,浙靜. 現代汽車電子技術應用的發展趨勢[J]. 世界汽車, 2000,(03) .
[5] 別輝,過學訊. 現代電子技術在汽車上的全面應用[J]. 北京汽車, 2006,(04) .
[6] 危明飛,高偉,包艷,魏輝. 電子技術在現代汽車上的應用及發展趨勢[J]. 重型汽車, 2005,(06) .
[7] 李磊,商達. 現代汽車上電子技術的應用[J]. 現代電子技術, 2004,(08) .
[8] 顧曄. 電子控制技術在汽車上的應用[J]. 汽車研究與開發, 2005,(09) .
[9] 仲子平 ,余文明. 現代汽車電子控制技術的應用及發展趨勢[J]. 現代機械, 2003,(03) .
[10] 馬桂英,欒英傑. 現代汽車電子控制技術應用與發展[J]. 浙江交通職業技術學院學報, 2001,(02) .
4. 求應用電子技術畢業論文12000字
兄弟啊,我不敢給你啊,不然你的畢業論文就是造假,不能畢業了…
5. 求電子技術論文
現代電力電子技術淺探
電力電子技術是研究採用電力電子器件實現對電能的控制和變換的科學,是介於電氣工程三大主要領域——電力、電子和控制之間的交叉學科,在電力、工業、交通、航空航天等領域具有廣泛的應用。電力電子技術的應用已經深入到工業生產和社會生活的各個方面,成為傳統產業和高新技術領域不可缺少的關鍵技術,可以有效地節約能源。
一、電力電子技術的發展
現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始於五十年代末六十年代初的硅整流器件,其發展先後經歷了整流器時代、逆變器時代和變頻器時代,並促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流於一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。
1、整流器時代
大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的製造硅整流器的半導體廠家就是那時的產物。
2、逆變器時代
七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。
3、變頻器時代
進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而後絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。
二、電力電子技術的應用
1、一般工業
工業中大量應用各種交直流電動機。直流電動機有良好的調速性能,給其供電的可控整流電源或直流斬波電源都是電力電子裝置。近年來,由於電力電子變頻技術的迅速發展,使得交流電機的調速性能可與直流電機相媲美,交流調速技術大量應用並占據主導地位。大至數千kW的各種軋鋼機,小到幾百W的數控機床的伺服電機,以及礦山牽引等場合都廣泛採用電力電子交直流調速技術。一些對調速性能要求不高的大型鼓風機等近年來也採用了變頻裝置,以達到節能的目的。還有些不調速的電機為了避免起動時的電流沖擊而採用了軟起動裝置,這種軟起動裝置也是電力電子裝置。電化學工業大量使用直流電源,電解鋁、電解食鹽水等都需要大容量整流電源。電鍍裝置也需要整流電源。電力電子技術還大量用於冶金工業中的高頻、中頻感應加熱電源、淬火電源及直流電弧爐電源等場合。
2、交通運輸
電氣化鐵道中廣泛採用電力電子技術。電氣機車中的直流機車中採用整流裝置,交流機車採用變頻裝置。直流斬波器也廣泛用於鐵道車輛。在未來的磁懸浮列車中,電力電子技術更是一項關鍵技術。除牽引電機傳動外,車輛中的各種輔助電源也都離不開電力電子技術。電動汽車的電機靠電力電子裝置進行電力變換和驅動控制,其蓄電池的充電也離不開電力電子裝置。一台高級汽車中需要許多控制電機,它們也要靠變頻器和斬波器驅動並控制。飛機、船舶需要很多不同要求的電源,因此航空和航海都離不開電力電子技術。如果把電梯也算做交通運輸,那麼它也需要電力電子技術。以前的電梯大都採用直流調速系統,而近年來交流變頻調速已成為主流。
3、電力系統
電力電子技術在電力系統中有著非常廣泛的應用。據估計,發達國家在用戶最終使用的電能中,有60%以上的電能至少經過一次以上電力電子變流裝置的處理。電力系統在通向現代化的進程中,電力電子技術是關鍵技術之一。可以毫不誇張地說,如果離開電力電子技術,電力系統的現代化就是不可想像的。直流輸電在長距離、大容量輸電時有很大的優勢,其送電端的整流閥和受電端的逆變閥都採用晶閘管變流裝置。近年發展起來的柔性交流輸電(FACTS)也是依靠電力電子裝置才得以實現的。無功補償和諧波抑制對電力系統有重要的意義。晶閘管控制電抗器(TCR)、晶閘管投切電容器(TSC)都是重要的無功補償裝置。近年來出現的靜止無功發生器(SVG)、有源電力濾波器(APF)等新型電力電子裝置具有更為優越的無功功率和諧波補償的性能。在配電網系統,電力電子裝置還可用於防止電網瞬時停電、瞬時電壓跌落、閃變等,以進行電能質量控制,改善供電質量。
在變電所中,給操作系統提供可靠的交直流操作電源,給蓄電池充電等都需要電力電子裝置。
4、電子裝置用電源
各種電子裝置一般都需要不同電壓等級的直流電源供電。通信設備中的程式控制交換機所用的直流電源以前用晶閘管整流電源,現在已改為採用全控型器件的高頻開關電源。大型計算機所需的工作電源、微型計算機內部的電源現在也都採用高頻開關電源。在各種電子裝置中,以前大量採用線性穩壓電源供電,由於高頻開關電源體積小、重量輕、效率高,現在已逐漸取代了線性電源。因為各種信息技術裝置都需要電力電子裝置提供電源,所以可以說信息電子技術離不開電力電子技術。
5、家用電器
照明在家用電器中佔有十分突出的地位。由於電力電子照明電源體積小、發光效率高、可節省大量能源,通常被稱為「節能燈」,它正在逐步取代傳統的白熾燈和日光燈。變頻空調器是家用電器中應用電力電子技術的典型例子。電視機、音響設備、家用計算機等電子設備的電源部分也都需要電力電子技術。此外,有些洗衣機、電冰箱、微波爐等電器也應用了電力電子技術。電力電子技術廣泛用於家用電器使得它和我們的生活變得十分貼近。
6、其他
不間斷電源(UPS)在現代社會中的作用越來越重要,用量也越來越大,在電力電子產品中已佔有相當大的份額。航天飛行器中的各種電子儀器需要電源,載人航天器中為了人的生存和工作,也離不開各種電源,這些都必需採用電力電子技術。傳統的發電方式是火力發電、水力發電以及後來興起的核能發電。能源危機後,各種新能源、可再生能源及新型發電方式越來越受到重視。其中太陽能發電、風力發電的發展較快,燃料電池更是備受關注。太陽能發電和風力發電受環境的制約,發出的電力質量較差,常需要儲能裝置緩沖,需要改善電能質量,這就需要電力電子技術。當需要和電力系統聯網時,也離不開電力電子技術。為了合理地利用水力發電資源,近年來抽水儲能發電站受到重視。其中的大型電動機的起動和調速都需要電力電子技術。超導儲能是未來的一種儲能方式,它需要強大的直流電源供電,這也離不開電力電子技術。核聚變反應堆在產生強大磁場和注入能量時,需要大容量的脈沖電源,這種電源就是電力電子裝置。科學實驗或某些特殊場合,常常需要一些特種電源,這也是電力電子技術的用武之地。以前電力電子技術的應用偏重於中、大功率。現在,在1kW以下,甚至幾十W以下的功率范圍內,電力電子技術的應用也越來越廣,其地位也越來越重要。這已成為一個重要的發展趨勢,值得引起人們的注意。
總之,電力電子技術的應用范圍十分廣泛。從人類對宇宙和大自然的探索,到國民經濟的各個領域,再到我們的衣食住行,到處都能感受到電力電子技術的存在和巨大魅力。這也激發了一代又一代的學者和工程技術人員學習、研究電力電子技術並使其飛速發展。電力電子裝置提供給負載的是各種不同的直流電源、恆頻交流電源和變頻交流電源,因此也可以說,電力電子技術研究的也就是電源技術。電力電子技術對節省電能有重要意義。特別在大型風機、水泵採用變頻調速方面,在使用量十分龐大的照明電源等方面,電力電子技術的節能效果十分顯著,因此它也被稱為是節能技術。
相關論文,僅供參考。
希望對您有幫助。
6. 求幾篇電子技術類的英文文獻及翻譯
http://zh.wikipedia.org/wiki/%E7%94%B5%E5%AD%90%E5%AD%A6
Electronics is the study of the flow of charge through various materials and devices such as semiconctors, resistors, inctors, capacitors, nano-structures and vacuum tubes. Although considered to be a theoretical branch of physics, the design and construction of electronic circuits to solve practical problems is an essential technique in the fields of electronic engineering and computer engineering. This science starts about 1908 with the invention by Dr Lee De Forest of the valve (triode) Before 1950 this science was named "Radio" or "Radio technics" because that was its principal application.
The study of new semiconctor devices and surrounding technology is sometimes considered a branch of physics. This article focuses on engineering aspects of electronics.
Electronic systems are used to perform a wide variety of tasks. The main uses of electronic circuits are:
The controlling and processing of data.
The conversion to/from and distribution of electric power.
Both these applications involve the creation and/or detection of electromagnetic fields and electric currents. While electrical energy had been used for some time prior to the late 19th century to transmit data over telegraph and telephone lines, development in electronics grew exponentially after the advent of radio.
One way of looking at an electronic system is to divide it into 3 parts:
Inputs – Electronic or mechanical sensors (or transcers). These devices take signals/information from external sources in the physical world (such as antennas or technology networks) and convert those signals/information into current/voltage or digital (high/low) signals within the system.
Signal processors – These circuits serve to manipulate, interpret and transform inputted signals in order to make them useful for a desired application. Recently, complex signal processing has been accomplished with the use of Digital Signal Processors.
Outputs – Actuators or other devices (such as transcers) that transform current/voltage signals back into useful physical form (e.g., by accomplishing a physical task such as rotating an electric motor).
For example, a television set contains these 3 parts. The television's input transforms a broadcast signal (received by an antenna or fed in through a cable) into a current/voltage signal that can be used by the device. Signal processing circuits inside the television extract information from this signal that dictates brightness, colour and sound level. Output devices then convert this information back into physical form. A cathode ray tube transforms electronic signals into a visible image on the screen. Magnet-driven speakers convert signals into audible sound.
Electronic devices and components
An electronic component is any physical entity in an electronic system whose intention is to affect the electrons or their associated fields in a desired manner consistent with the intended function of the electronic system. Components are generally intended to be in mutual electromechanical contact, usually by being soldered to a printed circuit board (PCB), to create an electronic circuit with a particular function (for example an amplifier, radio receiver, or oscillator). Components may be packaged singly or in more or less complex groups as integrated circuits.
Types of circuits
Analog circuits
Most analog electronic appliances, such as radio receivers, are constructed from combinations of a few types of basic circuits. Analog circuits use a continuous range of voltage as opposed to discrete levels as in digital circuits. The number of different analog circuits so far devised is huge, especially because a 'circuit' can be defined as anything from a single component, to systems containing thousands of components.
Analog circuits are sometimes called linear circuits although many non-linear effects are used in analog circuits such as mixers, molators, etc. Good examples of analog circuits include vacuum tube and transistor amplifiers, operational amplifiers and oscillators.
Some analog circuitry these days may use digital or even microprocessor techniques to improve upon the basic performance of the circuit. This type of circuit is usually called "mixed signal."
Sometimes it may be difficult to differentiate between analog and digital circuits as they have elements of both linear and non-linear operation. An example is the comparator which takes in a continuous range of voltage but puts out only one of two levels as in a digital circuit. Similarly, an overdriven transistor amplifier can take on the characteristics of a controlled switch having essentially two levels of output.
Digital circuits
Main article: Digital circuits
Digital circuits are electric circuits based on a number of discrete voltage levels. Digital circuits are the most common physical representation of Boolean algebra and are the basis of all digital computers. To most engineers, the terms "digital circuit", "digital system" and "logic" are interchangeable in the context of digital circuits. In most cases the number of different states of a node is two, represented by two voltage levels labeled "Low"(0) and "High"(1). Often "Low" will be near zero volts and "High" will be at a higher level depending on the supply voltage in use.
Computers, electronic clocks, and programmable logic controllers (used to control instrial processes) are constructed of digital circuits. Digital Signal Processors are another example.
Building-blocks:
Logic gates
Adders
Binary Multipliers
Flip-Flops
Counters
Registers
Multiplexers
Schmitt triggers
Highly integrated devices:
Microprocessors
Microcontrollers
Application-specific integrated circuit(ASIC)
Digital signal processor (DSP)
Field-programmable gate array (FPGA)
Mixed-signal circuits
Main article: Mixed-signal integrated circuit
Mixed-signal circuits refers to integrated circuits (ICs) which have both analog circuits and digital circuits combined on a single semiconctor die or on the same circuit board. Mixed-signal circuits are becoming increasingly common. Mixed circuits are usually used to control an analog device using digital logic, for example the speed of a motor. Analog to digital converters and digital to analog converters are the primary examples. Other examples are transmission gates and buffers.
Heat dissipation and thermal management
Main article: Thermal management of electronic devices and systems
Heat generated by electronic circuitry must be dissipated to prevent immediate failure and improve long term reliability. Techniques for heat dissipation can include heatsinks and fans for air cooling, and other forms of computer cooling such as water cooling. These techniques use convection, conction, & radiation of heat energy.
Noise
Main article: Electronic noise
Noise is associated with all electronic circuits. Noise is defined[1] as unwanted disturbances superposed on a useful signal that tend to obscure its information content. Noise is not the same as signal distortion caused by a circuit.
Electronics theory
Main article: Mathematical methods in electronics
Mathematical methods are integral to the study of electronics. To become proficient in electronics it is also necessary to become proficient in the mathematics of circuit analysis.
Circuit analysis is the study of methods of solving generally linear systems for unknown variables such as the voltage at a certain node or the current though a certain branch of a network. A common analytical tool for this is the SPICE circuit simulator.
Also important to electronics is the study and understanding of electromagnetic field theory.
Electronic test equipment
Main article: Electronic test equipment
Electronic test equipment is used to create stimulus signals and capture responses from electronic Devices Under Test (DUTs). In this way, the proper operation of the DUT can be proven or faults in the device can be traced and repaired.
Practical electronics engineering and assembly requires the use of many different kinds of electronic test equipment ranging from the very simple and inexpensive (such as a test light consisting of just a light bulb and a test lead) to extremely complex and sophisticated such as Automatic Test Equipment.
Computer aided design (CAD)
Main article: Electronic design automation
Today's electronics engineers have the ability to design circuits using premanufactured building blocks such as power supplies, semiconctors (such as transistors), and integrated circuits. Electronic design automation software programs include schematic capture programs and printed circuit board design programs. Popular names in the EDA software world are NI Multisim, Cadence (ORCAD), Eagle PCB and Schematic, Mentor (PADS PCB and LOGIC Schematic), Altium (Protel), LabCentre Electronics (Proteus) and many others.
Construction methods
Main article: Electronic packaging
Many different methods of connecting components have been used over the years. For instance, early electronics often used point to point wiring with components attached to wooden breadboards to construct circuits. Cordwood construction and wire wraps were other methods used. Most modern day electronics now use printed circuit boards (made of FR4), and highly integrated circuits. Health and environmental concerns associated with electronics assembly have gained increased attention in recent years, especially for procts destined to the European Union, with its Restriction of Hazardous Substances Directive (RoHS) and Waste Electrical and Electronic Equipment Directive (WEEE), which went into force in July 2006.
7. 關於汽車電子技術應用的參考文獻有哪些
提供一些關於汽車電子技術應用的參考文獻,供參考。
[1] 劉艷梅. 電子技術在現代汽車上的發展與應用[J]. 中國科技信息, 2006,(01) .
[2] 何玉軍. 國內外汽車電子技術應用現狀[J]. 電子產品世界, 2000,(05) .
[3] 孫汯. 現代信息電子技術在汽車上的應用和發展[J]. 上海汽車, 2001,(10) .
[4] 邊明遠,浙靜. 現代汽車電子技術應用的發展趨勢[J]. 世界汽車, 2000,(03) .
[5] 別輝,過學訊. 現代電子技術在汽車上的全面應用[J]. 北京汽車, 2006,(04) .
[6] 危明飛,高偉,包艷,魏輝. 電子技術在現代汽車上的應用及發展趨勢[J]. 重型汽車, 2005,(06) .
[7] 李磊,商達. 現代汽車上電子技術的應用[J]. 現代電子技術, 2004,(08) .
[8] 顧曄. 電子控制技術在汽車上的應用[J]. 汽車研究與開發, 2005,(09) .
[9] 仲子平 ,余文明. 現代汽車電子控制技術的應用及發展趨勢[J]. 現代機械, 2003,(03) .
[10] 馬桂英,欒英傑. 現代汽車電子控制技術應用與發展[J]. 浙江交通職業技術學院學報, 2001,(02) .
8. 求電子技術的論文
摘要:文中回顧電力電子技術的發展,闡述了電力電子技術發展的趨勢,論述了電力電子技 術的創新和器件開發應用,將對我國工業領域形成巨大的生產力,以此推動國民經濟高速高 效可持續發展 關鍵詞:發展趨勢 技術創新器件開發 應用推廣 1概述
9. 應用電子技術畢業論文怎麼寫呢
應用電子技術的文章不難的,寫創新的即可。之前也不懂,還是學長給的文方網,寫的《CMOS掉電檢測及保護電路設計》,靠譜的說
有射極電阻的基本電路中雙極型晶體三極體工作狀態的一種判斷方法
論較大規模數字邏輯電路進化實現
有源功率因素校正電路控制方法的研究
基於單片機的升壓電路設計與模擬
基於AT89S52單片機廣告燈控制電路設計的教學
基於FPGA的無機EL顯示模塊控制電路設計
串聯補償逆變電路的電壓累加現象研究
輔導材料(二) 學習單元電路的方法和技巧
一種新穎的磁耦合式無源無損吸收電路
EDA軟體在電路設計中的合理應用
基於LMH6505直流耦合型可變增益超聲接收電路的設計 優先出版
基於可編程模擬器件的精密整流電路設計
超聲波戶外散霧感測器電路裝置
一款無電壓比較器的欠壓保護電路
一體化軌道電路方向繼電器應用實例分析
DS18B20溫度測量電路的設計與模擬
三相交流電動轉轍機5線制道岔電路模擬試驗新方法
基於Protel DXP的模擬電路的模擬分析
InGaP/GaAs HBT射頻功率放大器在片溫度補償電路研究
電子電路實驗教學模式的探索與實踐
電路模型的改進及若干相應結果
交流伺服電機驅動控制器單元電路的設計分析
上海集成電路產業發展整體態勢與對策建議
25Hz相敏軌道電路的計算
調諧區絕緣化無碴軌道對軌道電路傳輸性能的影響分析
穩定靜態工作點電路的分析
25 Hz相敏軌道電路抗干擾分析及改進方案
40MS/s全差分采樣-保持電路的設計
單通道傳輸多路監控信號的電路設計
電路分析模擬實驗演示系統
提速道岔轉換電路的故障處理
基於LabVIEW的艦用空壓機控制電路虛擬檢測平台設計 優先出版
超大規模集成電路設計基礎 第一講 微電子技術概況
深圳集成電路設計產業化基地管理中心文件深集管[2005]021號關於召開《2006』(第四屆)泛珠三角集成電路業聯誼暨市場推介會》的通知
簡述彩電保護執行電路與保護顯示電路(上)
跟我學修VCD、SVCD機(九)RF信號處理電路和數字信號處理(DSP)電路
變頻器的濾波電路設計
有源電路和無源電路術語的討論
絕熱CMOS與傳統CMOS介面電路的設計
PCB板中時鍾電路的EMC問題探究
在電路分析教學中引入Matlab軟體
淺析數字電路實驗的設計
ZPW-2000A站內移頻電碼化N+1 FS電路的改進
五線制提速道岔電路技術改進探討