資料庫倉庫
① 數據倉庫與SQL資料庫有什麼區別
首先,定義三個概念:資料庫軟體、資料庫、數據倉庫。
資料庫軟體:是一種軟體,可以看得見,可以操作。用來實現資料庫邏輯功能。屬於物理層。
資料庫:是一種邏輯概念,用來存放數據的倉庫。通過資料庫軟體來實現。資料庫由很多表組成,表是二維的,一張表裡可以有很多欄位。欄位一字排開,對應的數據就一行一行寫入表中。資料庫的美,在於能夠用二維表現多維關系。目前市面上流行的資料庫都是二維資料庫。如:Oracle、DB2、MySQL、Sybase、MS SQL Server等。
數據倉庫:是資料庫概念的升級。從邏輯上理解,資料庫和數據倉庫沒有區別,都是通過資料庫軟體實現的存放數據的地方,只不過從數據量來說,數據倉庫要比資料庫更龐大得多。數據倉庫主要用於數據挖掘和數據分析。
接下來,就是詳細說明了。在IT的架構體系中,資料庫是必須存在的。必須要有地方存放數據。比如現在的網購,淘寶,京東等等。物品的存貨數量,貨品的價格,用戶的賬戶余額之類的。這些數據都是存放在後台資料庫中。或者最簡單理解,我們現在微博,QQ等賬戶的用戶名和密碼。在後台資料庫必然有一張user表,欄位起碼有兩個,即用戶名和密碼,然後我們的數據就一行一行的存在表上面。當我們登錄的時候,我們填寫了用戶名和密碼,這些數據就會被傳回到後台去,去跟表上面的數據匹配,匹配成功了,你就能登錄了。匹配不成功就會報錯說密碼錯誤或者沒有此用戶名等。這個就是資料庫,資料庫在生產環境就是用來幹活的。凡是跟業務應用掛鉤的,我們都使用資料庫。
而數據倉庫則是BI下的其中一種技術。由於資料庫是跟業務應用掛鉤的,所以一個資料庫不可能裝下一家公司的所有數據。資料庫的表設計往往是針對某一個應用進行設計的。比如剛才那個登錄的功能,這張user表上就只有這兩個欄位,沒有別的欄位了。但是這張表符合應用,沒有問題。但是這張表不符合分析。比如我想知道在哪個時間段,用戶登錄的量最多?哪個用戶一年購物最多?諸如此類的指標。那就要重新設計資料庫的表結構了。對於數據分析和數據挖掘,我們引入數據倉庫概念。數據倉庫的表結構是依照分析需求,分析維度,分析指標進行設計的。數據倉庫的數據來源於那些後台持續不停運作的資料庫表。數據的搬運就牽涉到另一個技術叫ETL。這個過程就是數據從一個資料庫到了數據倉庫
② 如何建立一個倉庫資料庫
很簡單,用EXCEL做兩個表格,第一個是每個物料所在的庫位,第二個是進出的賬目,然後用SUMIF統計每個物料的結余數量。
每個月可以做一個,把上個月的結余數作為期初的庫存數字。
③ 如何用Access資料庫創建一個簡單的倉庫管理資料庫主要步驟是什麼,交作業,
1、建一個物品目錄表
2、期初數
3、入庫表
4、出庫表
物品目錄ID分別與入庫出庫的物品ID關聯
5、用查詢,設內計收發存匯總表,統計出各物品的期初數、容本期入庫數、本期出庫數、期末結存數。
6、設計收發存匯總表的列印格式。
實例到我的網盤下載 網頁鏈接
④ 簡述數據倉庫與關系資料庫的區別與聯系
區別:
1、資料庫是面向事務的設計,數據倉庫是面向主題設計的。
2、資料庫一般存儲在線交易數據,數據倉庫存儲的一般是歷史數據。
3、資料庫是面向事務的設計,數據倉庫是面向主題設計的。資料庫一般存儲在線交易數據,數據倉庫存儲的一般是歷史數據。
4、資料庫設計是盡量避免冗餘,一般採用符合範式的規則來設計,數據倉庫在設計是有意引入冗餘,採用反範式的方式來設計。
聯系:
數據倉庫,是在資料庫已經大量存在的情況下,為了進一步挖掘數據資源、為了決策需要而產生的,數據倉庫的出現,並不是要取代資料庫。目前,大部分數據倉庫還是用關系資料庫管理系統來管理的。可以說,資料庫、數據倉庫相輔相成、各有千秋。
(4)資料庫倉庫擴展閱讀:
1、面向主題的:傳統資料庫主要是為應用程序進行數據處理,未必按照同一主題存儲數據;數據倉庫側重於數據分析工作,是按照主題存儲的。
這一點,類似於傳統農貿市場與超市的區別—市場裡面,白菜、蘿卜、香菜會在一個攤位上,如果它們是一個小販賣的;而超市裡,白菜、蘿卜、香菜則各自一塊。也就是說,市場里的菜(數據)是按照小販(應用程序)歸堆(存儲)的,超市裡面則是按照菜的類型(同主題)歸堆的。
2、與時間相關:資料庫保存信息的時候,並不強調一定有時間信息。數據倉庫則不同,出於決策的需要,數據倉庫中的數據都要標明時間屬性。決策中,時間屬性很重要。同樣都是累計購買過九車產品的顧客,一位是最近三個月購買九車,一位是最近一年從未買過,這對於決策者意義是不同的。
3、不可修改:數據倉庫中的數據並不是最新的,而是來源於其它數據源。數據倉庫反映的是歷史信息,並不是很多資料庫處理的那種日常事務數據(有的資料庫例如電信計費資料庫甚至處理實時信息)。因此,數據倉庫中的數據是極少或根本不修改的;當然,向數據倉庫添加數據是允許的。
⑤ 資料庫與數據倉庫的區別
資料庫是面向事務的設計,數據倉庫是面向主題設計的。資料庫一般存儲在線交易數據,數據倉庫存儲的一般是歷史數據。
「與時間相關」:資料庫保存信息的時候,並不強調一定有時間信息。數據倉庫則不同,出於決策的需要,數據倉庫中的數據都要標明時間屬性。決策中,時間屬性很重要。同樣都是累計購買過九車產品的顧客,一位是最近三個月購買九車,一位是最近一年從未買過,這對於決策者意義是不同的。
「不可修改」:數據倉庫中的數據並不是最新的,而是來源於其它數據源。數據倉庫反映的是歷史信息,並不是很多資料庫處理的那種日常事務數據(有的資料庫例如電信計費資料庫甚至處理實時信息)。因此,數據倉庫中的數據是極少或根本不修改的;當然,向數據倉庫添加數據是允許的。
拓展資料:
數據倉庫的出現,並不是要取代資料庫。數據倉庫,是在資料庫已經大量存在的情況下,為了進一步挖掘數據資源、為了決策需要而產生的,它決不是所謂的「大型資料庫」。
目前,大部分數據倉庫還是用關系資料庫管理系統來管理的。可以說,資料庫、數據倉庫相輔相成、各有千秋。
⑥ 傳統資料庫和數據倉庫的區別
簡而言之,資料庫是面向事務的設計,數據倉庫是面向主題設計的。
資料庫一般存儲在線交易數據,數據倉庫存儲的一般是歷史數據。
資料庫設計是盡量避免冗餘,一般採用符合範式的規則來設計,數據倉庫在設計是有意引入冗餘,採用反範式的方式來設計。
資料庫是為捕獲數據而設計,數據倉庫是為分析數據而設計,它的兩個基本的元素是維表和事實表。維是看問題的角度,比如時間,部門,維表放的就是這些東西的定義,事實表裡放著要查詢的數據,同時有維的ID。
單從概念上講,有些晦澀。任何技術都是為應用服務的,結合應用可以很容易地理解。以銀行業務為例。資料庫是事務系統的數據平台,客戶在銀行做的每筆交易都會寫入資料庫,被記錄下來,這里,可以簡單地理解為用資料庫記帳。數據倉庫是分析系統的數據平台,它從事務系統獲取數據,並做匯總、加工,為決策者提供決策的依據。比如,某銀行某分行一個月發生多少交易,該分行當前存款余額是多少。如果存款又多,消費交易又多,那麼該地區就有必要設立ATM了。
顯然,銀行的交易量是巨大的,通常以百萬甚至千萬次來計算。事務系統是實時的,這就要求時效性,客戶存一筆錢需要幾十秒是無法忍受的,這就要求資料庫只能存儲很短一段時間的數據。而分析系統是事後的,它要提供關注時間段內所有的有效數據。這些數據是海量的,匯總計算起來也要慢一些,但是,只要能夠提供有效的分析數據就達到目的了。
數據倉庫,是在資料庫已經大量存在的情況下,為了進一步挖掘數據資源、為了決策需要而產生的,它決不是所謂的「大型資料庫」。那麼,數據倉庫與傳統資料庫比較,有哪些不同呢?讓我們先看看W.H.Inmon關於數據倉庫的定義:面向主題的、集成的、與時間相關且不可修改的數據集合。
「面向主題的」:傳統資料庫主要是為應用程序進行數據處理,未必按照同一主題存儲數據;數據倉庫側重於數據分析工作,是按照主題存儲的。這一點,類似於傳統農貿市場與超市的區別—市場裡面,白菜、蘿卜、香菜會在一個攤位上,如果它們是一個小販賣的;而超市裡,白菜、蘿卜、香菜則各自一塊。也就是說,市場里的菜(數據)是按照小販(應用程序)歸堆(存儲)的,超市裡面則是按照菜的類型(同主題)歸堆的。
「與時間相關」:資料庫保存信息的時候,並不強調一定有時間信息。數據倉庫則不同,出於決策的需要,數據倉庫中的數據都要標明時間屬性。決策中,時間屬性很重要。同樣都是累計購買過九車產品的顧客,一位是最近三個月購買九車,一位是最近一年從未買過,這對於決策者意義是不同的。
「不可修改」:數據倉庫中的數據並不是最新的,而是來源於其它數據源。數據倉庫反映的是歷史信息,並不是很多資料庫處理的那種日常事務數據(有的資料庫例如電信計費資料庫甚至處理實時信息)。因此,數據倉庫中的數據是極少或根本不修改的;當然,向數據倉庫添加數據是允許的。
數據倉庫的出現,並不是要取代資料庫。目前,大部分數據倉庫還是用關系資料庫管理系統來管理的。可以說,資料庫、數據倉庫相輔相成、各有千秋。
補充一下,數據倉庫的方案建設的目的,是為前端查詢和分析作為基礎,由於有較大的冗餘,所以需要的存儲也較大。為了更好地為前端應用服務,數據倉庫必須有如下幾點優點,否則是失敗的數據倉庫方案。
1.效率足夠高。客戶要求的分析數據一般分為日、周、月、季、年等,可以看出,日為周期的數據要求的效率最高,要求24小時甚至12小時內,客戶能看到昨天的數據分析。由於有的企業每日的數據量很大,設計不好的數據倉庫經常會出問題,延遲1-3日才能給出數據,顯然不行的。
2.數據質量。客戶要看各種信息,肯定要准確的數據,但由於數據倉庫流程至少分為3步,2次ETL,復雜的架構會更多層次,那麼由於數據源有臟數據或者代碼不嚴謹,都可以導致數據失真,客戶看到錯誤的信息就可能導致分析出錯誤的決策,造成損失,而不是效益。
3.擴展性。之所以有的大型數據倉庫系統架構設計復雜,是因為考慮到了未來3-5年的擴展性,這樣的話,客戶不用太快花錢去重建數據倉庫系統,就能很穩定運行。主要體現在數據建模的合理性,數據倉庫方案中多出一些中間層,使海量數據流有足夠的緩沖,不至於數據量大很多,就運行不起來了。
⑦ 倉庫管理能用資料庫嗎
倉庫管理實際上就是一個應用程序,一般的應用程序均使用資料庫作內為數據的存儲與讀容取,當然倉庫管理也應該使用資料庫。
資料庫比較多,目前流行的小型資料庫是Access資料庫,大型資料庫有SQL Server 資料庫、Oracle資料庫等,根據你的需要選擇資料庫。各資料庫有多個版本,在使用時根據你的需要以及電腦的配置情況選擇資料庫的版本。
⑧ 如何用Access資料庫創建一個簡單的倉庫管理資料庫主要步驟是什麼,交作業,有現成的最好。
你好
1、用來access建一空資料庫自。
2、如果已經有excel形式的,在access文件欄用「獲取外部數據(導入表)」即可,沒有的話建立一個表。欄位名自己根據需要定。
3、用sql語句(或在查詢的設計視圖中)建立需要的查詢。
4、建立一個界面窗體,來管理或調用查詢(可以用「宏」、也可用VBA),再建立需要格式的報表。
其它的,根據實際需要而定。
滿意請採納
⑨ 資料庫就是在計算機外部儲存器中用於存儲數據的倉庫。這句話是對的嗎
可以這么理解
嚴格地說,資料庫是「按照數據結構來組織、存儲和管理數據的倉專庫」。
仔細看上面的定屬義,!!!
並沒有說在內存中的就不叫資料庫啊,不是嗎?
無論他在什麼地方存儲,它只要符合「按照數據結構來組織、存儲和管理數據的倉庫」這個定義,那他就可以叫資料庫。
至於「資料庫是在計算機外部儲存器中用於儲存數據的倉庫 !!」
這種說法是不嚴謹地。
⑩ 數據倉庫與資料庫的主要區別有
首先我們來了解數據倉庫和資料庫分別是什麼:
1、資料庫:是一種邏輯概念,用來存放數據的倉庫,通過資料庫軟體來實現。資料庫由很多表組成,表是二維的,一張表裡面有很多欄位。欄位一字排開,對數據就一行一行的寫入表中。資料庫的表,在於能夠用二維表現多維的關系。如:oracle、DB2、MySQL、Sybase、MSSQL Server等。
2、數據倉庫:是資料庫概念的升級。從邏輯上理解,資料庫和數據倉庫沒有區別,都是通過資料庫軟體實現存放數據的地方,只不過從數據量來說,數據倉庫要比資料庫更龐大德多。數據倉庫主要用於數據挖掘和數據分析,輔助領導做決策;
區別主要總結為以下幾點:
1.資料庫只存放在當前值,數據倉庫存放歷史值;
2.資料庫內數據是動態變化的,只要有業務發生,數據就會被更新,而數據倉庫則是靜態的歷史數據,只能定期添加、刷新;
3.資料庫中的數據結構比較復雜,有各種結構以適合業務處理系統的需要,而數據倉庫中的數據結構則相對簡單;
4.資料庫中數據訪問頻率較高,但訪問量較少,而數據倉庫的訪問頻率低但訪問量卻很高;
5.資料庫中數據的目標是面向業務處理人員的,為業務處理人員提供信息處理的支持,而數據倉庫則是面向高層管理人員的,為其提供決策支持;
6.資料庫在訪問數據時要求響應速度快,其響應時間一般在幾秒內,而數據倉庫的響應時間則可長達數幾小時