采礦文獻
一定要比較的話是SCI的難些。那什麼是SCI、EI檢索呢?1論文進入SCI、Ei等國際檢索系統的意義1)加大論文信息傳播的力度、速度和廣度,吸引讀者,拓寬國內外的讀者面,提高論文乃至期刊在國內外的被引頻次;2)引起期刊重視,提高作者論文的採用率;3)推動國際學術交流,促進科學研究工作;4)促進論文編寫格式的標准化和規范化,並與國際文獻接軌;5)提高論文乃至期刊的社會效益、經濟效益;6)提高作者、期刊、工作單位在國內外的學術地位和知名度。2國際六大著名檢索系統1)美國《科學引文索引》SCI(見下文)。2)美國《工程索引》Ei(見下文)。3)美國《化學文摘》(ChemicalAbstracts,CA。CA報道的化學化工文獻量佔全世界化學化工文獻總量的98%左右,是當今世界上最負盛名、收錄最全、應用最為廣泛的查找化學化工文獻大型檢索工具。4)英國《科學文摘》(ScienceAbstracts,SA;或INSPEC)--《物理文摘》(SectionA-PhysicsAbstracts,PA);--《電子與電氣文摘》(SectionB-ElectricalEngineering&ElectronicsAbstracts,EEA);--《計算機與控制文摘》(SectionC-ComputersandControlAbstracts,CCA);--《信息技術》(InformationTechnology,IT)。5)俄羅斯《文摘雜志》(AbstractJournals,AJ)或РЖ(共220餘卷),被稱為世界三大綜合檢索統。6)日本《科學技術文獻速報》(,CBST;為印刷本,共12分冊)。現擴充為大型資料庫"日本科學技術情報中心"(,JICST)。被稱為世界三大綜合檢索系統。
② 求 采礦方面的 英文文獻及其中文翻譯一篇
Coal mine waste water treatment and reuse technology Comparative Study
Digest:Introced the sewage and wastewater processing resources of the latest technologies and processes, analysis and comparison of the three kinds of process options to deal with coal mine waste water system investment and operating costs, and to explore the reverse osmosis water treatment technology in the coal mine waste water treatment application The technical and economic feasibility.Coal mine waste water treatment and reuse of the consolidated operating costs for the :2.185-2 .465 yuan / ton. One membrane of the processing costs as low as: 2.185 yuan / ton. Such prices on drought and water shortage in the Northwest region is very attractive. Of mine waste water recycling, not only can rece the amount of wastewater discharge, but also can make water resource, it should be said, it is a method of water resources in the hope of regeneration, but also our country to achieve sustainable use of water resources in an effective way to .
Key words: reverse osmosis electroplating wastewater recycling。
China's large population and uneven spatial and temporal distribution of freshwater resources, water resources and socio-economic development is not balanced; population growth has increased year after year the demand of water resources, instry's rapid development has become increasingly serious water pollution, thus creating a shortfall of water resources and water pollution are increasing.At present, China's prominent contradiction between water supply and demand, there are more than 300 cities short of water, of which there are 114 cities in serious water shortages. Water supply and demand in China in the 21st century the situation was very serious water crisis will become a question of resources in the most severe punishment of all issues. To resolve this problem, in addition to the scientific management of water resources and optimizing the assigned amount, the high-tech means to bring into full play the role of the use of water resources is also very crucial.
In recent years, China's annual volume of about 400-500 million sewage M3, treated emissions from only 15-25%, e to cross-flow of sewage everywhere, so that all our major sources of water proce different degrees of pollution, a serious deterioration of water environment 【4】 .Therefore, to enhance wastewater treatment, so that not only the discharge standards but also to a large number of reuse, very necessary, which improve the water environment to ease the shortage of water resources, saving precious water resources are very important. Urban and instrial sewage has been the depth of treatment can be used for agricultural irrigation, instrial proction, urban landscape, Urban Green, life miscellaneous, groundwater recharge, and additional surface water in such applications as 【8】.Traditional water treatment technology can eliminate some air pollutants, the COD, BOD and heavy financial and other indicators of reced pollutant emission standards, or miscellaneous safety standards, but can not completely eliminate the drainage contained in the solubility of trace contaminants. Reverse osmosis membrane technology to thoroughly remove these pollutants to achieve the strict sense of the wastewater reclamation. Traditional treatment processes and membrane technology integration can be sewage or waste water into a different water quality standards for reuse water, or make it loop back to use, this would ease the contradiction between supply and demand, but also rece pollution, but also promote the development of environmental protection instry 【6】.
Sewage Wastewater Reuse Technology and Application Overview
The serious deterioration of water environment quality and the rapid economic development, and urgently requires a corresponding resource of sewage waste water technology. In this field of membrane separation technology occupies an important position and role. Membrane separation, as a high-tech in the last 40 years to develop quickly into the instrialization of the process of energy-efficient separation technology.Than 40 years, electrodialysis, reverse osmosis, microfiltration, ultrafiltration, nanofiltration, pervaporation, membrane contact and membrane reactions have been developed in energy, electronics, petrochemicals, pharmaceuticals, chemicals, light instry, food and beverage instry and the daily life and environmental protection Dengjun wide range of applications received, resulting in significant economic and social benefits. The needs of the community to make membrane technology promised born, but also the needs of society to promote the rapid development of membrane technology to membrane technology innovation, technological progress, improve, and become a unit operation, to become integrated in the process of the key 【9】.
1.Continuous membrane filtration technology
Hollow fiber membrane e to large surface area membrane moles of the loading density, so compact equipment; this film made by spinning, simple process, so proction costs are generally lower than the other films: In the absence of support layer may reverse cleaning, exceptional stain resistance of some good cleaning agent on the oxidative tolerance to the emergence of a good film made in large-scale sewage treatment works, the application of hollow fiber membrane has a unique advantage 【7】.
CMF technology is the core of the high anti-pollution film, as well as compatible with membrane cleaning technology, which enables non-stop cleaning membrane cleaning, and thus to achieve a continuous treatment of liquid non-stop to ensure a continuous and efficient operation of equipment.
CMF is currently mainly used in large-scale municipal wastewater treatment plant raw water the depth of the secondary settling tank treatment and reuse, desalination, or large-scale reverse osmosis pretreatment system. Surface water ground water purification, beverages, etc. to clarify the turbidity.
2.Membrane bio-reactor
Membrane bio-reactor is membrane separation technology and bio-technology combined with new technology. Used in the field of sewage waste water treatment using membrane pieces for solid-liquid separation, sludge or impurities interception return to the bio-reactor, handling the drainage of water through the membrane to form a sewage treatment membrane bioreactor system, The role of membrane moles is equivalent to conventional biological wastewater treatment systems in the secondary sedimentation tank 【4】.
MBR used in the film are flat membrane, tubular membrane and hollow fiber membrane, is currently mainly based hollow fiber membrane.
The MBR wastewater treatment, raw water sources have reached a very high water guidelines. This method is not limited to domestic wastewater treatment, MBR technology is also widely used in dyeing wastewater, scouring wastewater, meat processing, sewage water treatment systems. Another feature of MBR systems vary in size, the small device can be used for a family, large-scale installations daily processing capacity of up to tens of thousands of cubic meters.
3.Reverse Osmosis Technology
Reverse osmosis technology is the early 20th century, 60 developed a pressure-driven membrane separation technology. The technology is from seawater, brackish water desalination and developed, often referred to as "desalination technology." As the reverse osmosis technology has no phase change, component-based, process simple and convenient operation, accounting for small size, less investment, low energy consumption advantages to develop very rapidly. RO technology has been widely used in sea water, brackish water desalination, pure water, ultra-pure water preparation, chemical separation, concentration, purification, waste water resource and other fields. Projects throughout the electric power, electronics, chemicals, light instry, coal, environmental protection, medicine, food and other instries.
Water resource is incremental development of freshwater resources and the protection of the environment a al purpose. Inorganic series of wastewater treatment and seawater desalination of brackish water using the same equipment and have the more common process technology. RO can waste in copper, lead, mercury, nickel, antimony, beryllium, arsenic, chromium, selenium, ammonium, zinc ion removal addition to 90-99%.
At present, the reverse osmosis technology in urban wastewater treatment, a number of instrial waste water treatment application of the depth has been a high degree of attention, including water reuse, wastewater treatment plant secondary effluent from the depth of treatment, after primary treatment of instrial waste water depth of processing system to take high-quality fresh water. Many water-scarce countries in the Middle East, in the extensive use of reverse osmosis desalination technology, the introction of reverse osmosis technology technical processing secondary effluent, effluent quality up to TDS ≤ 80mg / L, the expansion of freshwater resources. Such as the Middle East, Australia, Singapore and other countries are examples of major projects in this area 【9】.
4.Integrated membrane process wastewater treatment methods
Integrated membrane process is ultrafiltration / microfiltration and reverse osmosis used in combination to form to meet the purpose of咱reuse wastewater treatment process.Ultrafiltration, microfiltration can be used as stand-alone high-level tertiary treatment method, is also an ideal pre-treatment process of reverse osmosis technology, anti-pollution ability, superior performance of ultrafiltration, microfiltration unit to replace the complex conventional treatment, and the water quality much higher than the three water indicators, not only can remove the sewage bacteria and suspended solids, the COD, BOD also have some effect but addition.In ultrafiltration, microfiltration after the use of reverse osmosis membranes, its traditional pre-wash cycle from 3-4 weeks to process more than six months, the membrane can prolong life for years to reach -6. Membrane integrated wastewater reclamation process has the system is stable, maintaining a small area of small, less use of chemicals, processes and operation of a simple and low cost.
Conclusion
Membrane Wastewater Treatment and Reuse of coal mine is technically entirely reliable, which has a successful experience.
With the rapid development of instry, water pollution, worsening water scarcity will become increasingly serious, instrial wastewater recycling will be referred to the agenda.
From the environmental perspective, recycling of waste water re-use of mine has a very important environmental significance.
Of mine waste water recycling, not only can rece the amount of wastewater discharge, but also can make water resource, it should be said, it is a method of water resources in the hope of regeneration, but also our country to achieve sustainable use of water resources in an effective way to .
Of membrane processes for coal mine wastewater and reuse, both technically and economically feasible, economic and environmental benefits are very significant.
References
Gang Shao. Membrane water treatment technology and engineering examples 【M】. Beijing: Chemical Instry Press, 2002.256 ~ 280.
Healy I, Binchois music. The water and use the net again. Beijing: China Building a Board Association, 1985.
【3】 Bella G. Liputaike. Environmental engineer with the book. Beijing: China Building Instry Society out of plates, 1987.
【4】 High from Kai. Membrane separation technology and water reuse 【m】 .2003 Beijing Water Forum papers .2003.9.
【5】 Feng Zhang, Xu Ping. Reverse osmosis, nanofiltration membrane and its application in wastewater treatment 【M】. Membrane Science and Technology ,2003,23:234-236.
【6】 Mayao Guang, Ma Bolin. Wastewater utilization of agricultural resources. Beijing: Chemical Instry Press, 2002.45 ~ 78.
【7】 Yao Zhichun. Wastewater treatment and reuse. Gansu Water Conservancy and Hydropower 1999.: 56 ~ 60.
【8】 LEI Le-cheng, etc., sewage back with new technology and engineering design. Beijing: Chemical Engineering Press, .2002:453 ~ 461.
【9】 Zhang Bao cases. Reverse osmosis water treatment application technology 【M】. Beijing: China Electric Power Press, 2004.281 ~ 295.
煤礦礦井廢水處理回用工藝比較研究
摘要:介紹了污水、廢水處理資源化的最新技術和工藝,分析比較了三種工藝方案處理煤礦礦井廢水的系統投資和運行成本,並探討了反滲透水處理技術在煤礦礦井廢水處理中應用的技術經濟可行性.煤礦礦井廢水處理回用的綜合運行費用為:2.185-2.465元/噸。其中膜法的處理費用最低為:2.185元/噸。這樣的價格對乾旱缺水的西北地區是很有吸引力的。對礦井廢水進行回收再利用,不但可以減少廢水排放量,又可以使廢水資源化,應該說,它是一種水資源再生的希望方法,也是我國實現水資源可持續利用的有效途徑之一。
關鍵詞:反滲透電鍍廢水處理回收利用
我國人口眾多,淡水資源時空分布不均勻,水資源和社會經濟發展不均衡;人口的不斷增長又使水資源需求量逐年上升,工業的快速發展使水污染愈加嚴重,因此造成水資源缺短和水環境污染現象日趨嚴重。目前,我國水資源供需矛盾比較突出,全國有300多個城市缺水,其中有114個城市嚴重缺水。21世紀我國水資源供需形勢非常嚴重,水資源危機將成為所有資源問題中最為嚴懲的問題。要解決這一難題,除水資源的科學治理和優化配量之外,充分發揮高新科技手段在水資源利用中的作用也是十分關鍵的。
近年來,我國每年排污水量約400-500億M3,經處理後排放的僅15-25%,由於污水到處橫流,使我國各大水源都產生不同程度的污染,水環境嚴重惡化【4】。所以,加強污水深度治理,使之不僅達標排放而且還可大量回用,非常必要,這對改善水環境、緩解水資源的不足,節約寶貴的水資源都是十分重要的。城市及工業污水經過深度處理後可用於農業澆灌、工業生產、城市景觀、市政綠化、生活雜用、地下水回灌和補充地表水等方面的應用【8】。傳統水處理技術能夠消除部分污染物,將COD、BOD以及重金融等污染物指標降到安全排放標准或雜用標准,但無法完全消除排水中所含的微量溶解性污染物。採用反滲透膜技術可徹底去除這些污染物,實現嚴格意義下的污水再生。用傳統處理工藝和膜技術集成,可將污水或廢水變成不同水質標準的回用水,或使之循環回用,這樣即緩解了供求矛盾,又減少了污染,還可促進環保產業的發展【6】。
污水廢水資源化技術及應用簡介
水環境質量的嚴重惡化和經濟的高速發展,迫切要求有相應的污水廢水資源化的技術。在這一領域中膜分離技術佔有重要的位置和作用。膜分離作為一項高新技術在近40年來迅速發展成為產業化的高效節能分離技術過程。40多年,電滲析、反滲透、微濾、超濾、納濾、滲透汽化,膜接觸和膜反應過程相繼發展起來,在能源、電子、石化、醫葯衛生、化工、輕工、食品、飲料行業和日常生活及環保領域等均獲得廣泛的應用,產生了顯著的經濟和社會效益。社會的需求使膜技術應允而生,也是社會的需求促使膜技術迅速發展,使膜技術不斷創新、技術進步,完善,成為單元操作,成為集成過程中的關鍵【9】。
1.連續膜過濾技術
中空纖維膜由於比表面積大,膜組件的裝填密度大,所以設備緊湊;這種膜因紡制而成,工藝簡單,所以生產成本一般低於其它的膜:由於沒有支撐層均可以反向清洗,非凡是一些耐污染性好,對氧化性清洗劑耐受性好的膜的出現,使得在大規模的污水處理工程中,中空纖維膜的應用有獨特的優勢【7】。
CMF技術的核心是高抗污染膜以及與之相配合的膜清洗技術,可以實現對膜的不停機清洗清洗,從而做到對料液不間斷連續處理,保證設備的連續高效運行。
CMF目前主要用於大型城市污水處理廠二沉池生水的深度處理回用,海水淡化或大型反滲透系統的預處理。地表水地下水凈化、飲料澄清除濁等。
2.膜生物反應器
膜生物反應器是膜分離技術和生物技術結合的新工藝。用在污水廢水處理領域,利用膜件進行固液分離,截留的污泥或雜質迴流至在生物反應器中,處理的清水透過膜排水,構成了污水處理的膜生物反應器系統,膜組件的作用相當於傳統污水生物處理系統中的二沉池【4】。
MBR中使用的膜有平板膜、管式膜和中空纖維膜,目前主要以中空纖維膜為主。
生活污水經MBR處理後,生水水源已達到很高的水標准。此方法不僅限於處理生活污水,MBR技術也廣泛地用於染色廢水,洗毛廢水、肉類加工污水等水處理系統。MBR系統的另一個特點是規模可大可小,小裝置可用於一個家庭,大型裝置日處理量可達數萬立方米。
3.反滲透技術
反滲透技術是20世紀60年代初發展起來的以壓力為驅動力的膜分離技術。該技術是從海水、苦鹹水淡化而發展起來的,通常稱為「淡化技術」。由於反滲透技術具有無相變,組件化、流程簡單,操作方便,占面積小、投資少,耗能低等優點,發展十分迅速。RO技術已廣泛用於海水、苦鹹水淡化,純水、超純水制備,化工分離、濃縮、提純,廢水資源化等領域。工程遍布電力、電子、化工、輕工、煤炭、環保、醫葯、食品等行業。
廢水資源化是有開發增量淡水資源與保護環境雙重目的。無機系列廢水處理與海水苦鹹水淡化採用同類裝並具有較多共性工藝技術。RO可使廢液中的銅、鉛、汞、鎳、銻、鈹、砷、鉻、硒、銨、鋅等離子脫除除90-99%。
目前,反滲透技術在城市污水深度處理,一些工業廢水深度處理方面的應用受到了高度重視,包括中水回用,污水處理廠二級出水的深度處理,經初級處理後的工業廢水深度處理製取優質淡水。中東不少缺水國家,在大量採用反滲透海水淡化技術的同時,引入反滲透技技術處理二級污水,出水水質可達TDS≤80mg/L,擴大了淡水資源。如中東地區、澳大利亞、新加坡等國都有這方面的大型工程實例【9】。
4.集成膜過程污水深度處理方法
集成膜過程是將超濾/微濾與反滲透結合使用,形成能夠滿足各咱回用目的的污水深度處理工藝。超濾、微濾可以作為獨立的高級三級處理方法,也是反滲透過程理想的預處理工藝,抗污染能力強、性能優越的超濾、微濾單元代替了復雜的傳統處理工藝,而且出水品質遠高於三級出水指標,不但完全可以去除污水中的細菌和懸浮物,對COD、BOD也有一定的卻除效果。在超濾、微濾之後使用的反滲透膜,其清洗周期由採用傳統預處理工藝的3-4周增加到半年以上,膜壽命可延長到達-6年。膜集成污水再生工藝具有系統穩定、維護少、佔地小、化學品用量少、流程簡單和運行費用低等優點。
結論
煤礦礦井廢水處理回用的綜合運行費用為:2.185-2.465元/噸。其中膜法的處理費用最低為:2.185元/噸。這樣的價格對乾旱缺水的西北地區是很有吸引力的。
用膜法處理煤礦礦井廢水並回用在技術上是完全可靠的,國內外都有成功經驗。
隨著工業的快速發展,水資源的污染日益嚴重,缺水現象會越來越嚴重,工業廢水的回收利用將會提到議事日程。
從環境保護方面講,對礦井廢水進行回收再利用具有非常重要的環境意義。
對礦井廢水進行回收再利用,不但可以減少廢水排放量,又可以使廢水資源化,應該說,它是一種水資源再生的希望方法,也是我國實現水資源可持續利用的有效途徑之一。
膜法處理煤礦礦井廢水並回用,不但在技術上和經濟上都是可行的,經濟和環境效益都非常顯著。
參考文獻
邵剛.膜法水處理技術及工程實例【M】.北京:化學工業出版社,2002.256~280.
希利I,舒瓦樂.水的再凈與利用.北京:中國建築出板社,1985.
【3】貝拉G.利普泰克.環境工程師用冊.北京:中國建築工業出板社,1987.
【4】高從鍇.膜分離技術與水資源再利用【m】.2003北京水務論壇論文.2003.9.
【5】張烽,徐平.反滲透、納濾膜及其在廢水處理中的應用【M】.膜科學與技術,2003,23:234-236.
【6】馬耀光,馬柏林.廢水的農業資源化利用.北京:化學工業出版社,2002.45~78.
【7】姚志春.污水凈化再利用.甘肅水利水電1999.:56~60.
【8】雷樂成等,污水回用新技術及工程設計.北京:化學工程出版社.2002:453~461.
【9】張葆宗.反滲透水處理應用技術【M】.北京:中國電力出版社,2004.281~295.
③ 煤礦開采技術畢業論文
我幫你寫
你Q我就好了
④ 小弟在做采礦畢業設計 急求一片3000字英文參考文獻翻譯
附錄 1
井筒及巷道的支護
井筒的支護
在國外,很少使用磚、料石和鑄鐵井壁, 從前,幾乎全用木支架,但現在混凝土和金屬井壁使用量日增。 井壁的選擇決定於圍岩和水的條件,井筒的形式和材料的費用。
(1)木支架——直到最近,大多數方形的井筒還在用框形木支架支護井幫和分成隔間。.所用木料的尺寸和框距取決於所遇到的岩層情況。. 木支架缺點是費用高,強度低、壽命短,易引起火災。在膨脹性岩層中,木支架損壞得慢,警告時間長。在大多數情況下,開始鑿井時澆灌一個混凝土鎖口以固定支架,為井筒木支架提供良好的基礎。木框架一般用掛鉤掛在上面的框架上,框架就位後插入支柱,拉緊掛鉤,在井筒周圍鋪上背板。
(2)金屬支護——有時用金屬支架代替木支架。 通常與木背板配合使用。木背板可快速而高效地插入金屬支架的翼緣中。金屬支架若設計恰當其安裝的速度和准確度均比木支架高,因為安裝時金屬支架可能螺栓連接,並且排列很整齊。
(3)混凝土井壁——現在,原形混凝土井壁使用日益廣泛。 例如,在南非幾乎100%的井筒採用圓形混凝土井壁。而且幾乎所有井筒毫無例外地達到最高的鑿井速度。 除了鑿井速度快外,,還有許多其它優勢。 圓形混凝土井壁做井筒指甲其強度系數最高,風流特性最好,與任何井壁形式相比其維護量最小。混凝土井壁容易拆除並改裝成另一種提升布置方式,或改為風井而不影響圍岩狀態。這類井筒對涌水的控制或封堵容易的多。與大多數其他類型相比,這種井筒的事故較少,萬一發生事故,修復也容易得多。在某些特殊的情況下,也採用方形或橢圓形混凝土做井壁的井筒。盡管方形井筒的成本與圓形或橢圓形相仿,但其強度不如圓形或橢圓形井筒。橢圓形井筒具有良好的強度系數,需要分開風流時採用這種形狀。但起鑿井費用比圓形的高。
(4 )噴漿或噴射混凝土井壁——有一些井壁採用噴漿或噴射混凝土井壁。這類井筒的罐道一般用錨桿固定。如果井筒完成後並能不需要罐道,那麼鑿井時可採用鋼絲繩罐道。
巷道支護
過去,框形或多節木支架是大家熟悉的唯一支護井下巷道的方法。隨著坑木的減少,寬翼緣型的出現,鋼材,作為一種結構支護材料,迅速的取代了坑木。最近錨噴支護也列入礦山實用支護方式。不論錨桿還是噴射混凝土(包括噴漿及噴混凝土在內)一英尺巷道的支護費用一般比金屬支架要低。有時兩者同時採用,其費用也比金屬支架省。
(1)金屬支架——金屬支架通常由兩節組成,每節包括一條棚腿和半截拱。同樣兩節相對立好之後,在拱頂用螺栓對接。金屬支架的尺寸取決於岩石的性質和地壓。一般地說,小斷面巷道採用4英寸或5英寸金屬支架,間距為1.5—4英尺;中斷面巷道採用5~6 英寸金屬支架,間距為1.5—4英尺;大斷面巷道採用6~8英寸金屬支架,間距2~5英尺。對於全部採用錨噴支架的工程,只是在斷層和嚴重破碎或軟岩地帶才需用金屬支架。根據需要,金屬棚子還必須鋪以木檔塊及木背板。一個標准掘進班組架設一架金屬棚子,需時20~40分鍾。
(2 )錨桿支架——現在通用的能張緊的錨桿有許多多種,其主要區別在於,擰緊螺帽使錨桿張緊之前,在孔內固定錨頭的脹圈結構的不同。最適合某種岩石的錨頭形式要經常做試驗來確定。軟鋼金屬錨桿的直徑至少應為1英寸,長度應為10英尺(巷道斷面要足以允許使用這樣長的錨桿)。安裝錨桿時應認真研究岩石節理的規律。錨桿的布置要大致均勻有規律,使錨桿張緊之後能與圍岩構成一個相似的拱形結構,以承受作用在巷道上的外部壓力。在起拱線以上整個巷道頂板錨桿的平均間距在最小約12平方英尺/根,最大25或25以上平方英尺/根之間變化。由普通掘進班組安裝錨桿時,一個標准掘進班組通常在30至40分鍾內可安裝錨桿,一個小時也許只能平均安裝兩根。
(3 )噴射混凝土——噴射混凝土或噴漿,這種把混凝土或砂漿直接噴到拱形巷道頂板岩石表面的方法正迅速地被公認是一種效率高而又經濟的巷道支護方式。只要噴上的混凝土能附著相當時間達到初凝強度而不陷落,此方法在各類軟、硬岩石或硬土上均可用。有許多促凝劑可到初凝。混凝土的噴射厚度為2~6英尺。干法噴射的效果通常比濕法好,因為可以噴、得厚一些,可以採用較大粒度的骨料(最大為0.75英寸),每台噴嘴的小時生產率較高(一個小時達5立方碼)。噴射混凝土在經濟上常具備的優點之一是可在裝岩的同時,向巷道頂板噴混凝土,從而縮短完成整個「循環」所需用的時間。
木支架
掘進中也許需要支護巷道頂板和兩幫的支架。傳統的方法通常是掘進時先架設臨時木支架,然後換成永久支架或襯砌。永久支架也可用坑木。
坑木作永久支架時應該很好地晾乾並用防腐蝕劑處理。木支架不用專用的工具或設備就能方便地就地加工很快地架好,通過局部不良地層掘進時,用木材作臨時支架,容易截割和加工,適應各種需要。
木棚是由幾根坑木構成、橫截巷道斷面的支架。小斷面巷道最常用的是三個構件組成的棚子,由一根頂梁(橫梁或棚梁)架在兩個棚腿上組成。棚腿傾斜度是每英尺1—1.5英寸,這樣的斜度除非側壓力太大及底板松軟,一般能防止棚腿底部向里推移。棚腿一般為硬木,圓形,小頭的最小直徑為5英寸。頂梁最小厚度一般為5英寸,寬度6—8英寸。背板一般厚2英寸,兩幫和頂板上可鋪也可不鋪背板。
在膨脹岩層中兩棚腿底部一般有「偏坡底撐」以防止棚腿移動,底板易隆起的地方,可採用反拱支架。巷道的懸頂(或頂板)如果做成拱形往往比較穩定,特別是在寬巷道中更是如此。只有頂板需要支護而兩幫堅硬的地方,可以省去棚腿,拱梁則固定在起拱線處的梁窩中。支架木料的尺寸和棚架間距取決於巷道的斷面和所需承受的壓力。在膨脹岩層中,背板不要鋪得太密,相鄰背板之間應留一定間距,以釋放低壓。
裝設木支架的常規工序和速度主要取決於支架在工作面後面應保持多近的距離。如果每進一個循環需要立即支護,那麼架設支架就成為掘進循環的一部分。爆破後的第一道工序是撬落頂板上的浮石;在松軟的地層中,利用前探梁、滑梁或類似的裝置以支護最後一架棚子前面的頂板,以便裝岩時保護工人。一個循環的矸石裝完後,就架設新棚子,必要時用楔子固定並裝上背板,並為新的循環安裝好鑿岩機。這種工序顯然會減慢掘進速度,但是除非岩層條件太差需要才用前探板樁法或其他方法,一般坑木可標准化,並採用常規作業。作業開始之前,將所有材料和器材運到工作面,可加快速度;工人應攜帶整架棚子、角楔、木楔、背板和工具進入工作面。支護工作落後於工作面過遠的地方,一般需要專業支架隊。利用適當的工作台進行支架工作,可不影響掘進工作。如果採用移動式工作台,其檯面有幾架棚子長,其高度又能讓礦車從底下通過,則對掘進工作會有好處的。
附錄2
GROUND SUPPORT FOR SHAFTS AND TUNNELS
In the USA, brick, stone and cast iron shaft linings are rare; formerly, timbering was almost universal but concreting and steel framing are increasing in use. Choice of support depends on ground and water conditions, shape of shaft and cost of materials.
(1)Timber Sets——Until relatively recently, most rectangular shafts have used square-set timbering for ground support and compartment division .Size of the timber used and set spacing is dependent on ground conditions encountered .The disadvantages of timer sets are the cost, strength , short life and fire hazard involved. In swelling ground timbering fails slowly and with ample warning .in most cases , a concrete collar is poured at the start of a shaft to tie the sets in and provide a good bearing for the shaft-timbering installation .Timber sets usually are hung from the preceding set with steel hanging rods .After the set is in place , the posts are inserted and the hanging rods are tightened up . The lagging is placed in around the sides of the shaft.
(2)Steel Sets-Steel sets sometimes ate used instead of timber. Wood lagging generally is employed in conjunetion. The laggling can be placed in the web of the steel sket very quickly and effectivelt. Properly designed steel sets go in faster and more accuratelt than wooden sets, as they can be bolted together and lined up perfectly when assembled.
(3)Concrete Lining-Circular concrete-lined shafts are more and more used today. For example, in South Africa, almost 100% of the shafts installed are circular concretelined .Also almost without exception, the best sinking time is achieved. Besides the good sinking rate, there are numerous other advantages. The circular concrete section provides the greatest strength factor for ground support ,the best air-flow characteristics, and by far the lowest maintenance of any shaft type. It can be stripped easily and changed to another hoisting configuration, or to a ventilation shaft, without disturbing ground conditions. Water can be controlled or sealed off much easier in this type of shaft. There are fewer wrecks in this shaft than in most other types, and rehabilitation can be accomplished much easier if they do occnr. In some special cases concrete-lined shafts of a square of elliptical shape are used. Although the cost is similar, the square shaft does not have the strength of either the circular of elliptical. The elliptical shaft has a good strength factor and is used where split ventilation is required. It is, however, more expensive to sink than a circular shaft.
(4)Gunite or Shotcrete Lining——There have been some shafts sunk using gunite or shotcrete for wall support. The guides in this type of shaft usually are not required in the completed shafe, the rope guides could be used in sinking.
GROUND SUPPORT FOR TUNNELS
In former years, the square or segmented timber set was the only known method for supporting underground excavations. As timber become more scarce and wideflange steel shapes made their appearance, steel rapidly displaced timber as a structure-support material. More recently, rock bolting and pneumatically applied concrete have been added to the list of practical ground-support media. Either rock bolting or pneumatically applied concrete concrete usually cost less per linear foot of tunnel than steel ribs . Sometime the two are used together and still show a saving over steel ribs.
(1)Steel Rib Support-Steel rib sets commonly are fabricated in two pieces with the side leg and half of the arch in each piece. The two identical pieces are stood up and bolted together at a butt joint in the crown . Size of steel required will depend upon the nature of the rock and the pressure being exerted by the ground . Generally speaking, a small tunnel section will require a 4-or 5-in .rib with spacing of 1(1/2)to 4ft; medium-sized , 5-to 6-in. rib with spacing of 1(1/2) to 4 ft; large, a 6-to 8-in.rib with spacing of 2 to 5 ft. On a project where full utilization is being made of rock bolting and pneumatically applied concrete, steel rib supports need be used only in fault zones and through stretches of badly broken rock or soft ground. Supplementing the steel rib, timber blocking and lagging must be installed as required. A standard tunnel crew usually erects a set of steel in 20 to 40 min.
(2)Rock Bolting –A number of types of tensionable rockbolts presently are available , differing mostly in the arrangement of the expandable device which anchors the end of the bolt to the rock prior to applying the tension by tightening the nut. Experimentation frepuently is necessary to determine the type of anchor most suitable to a particular formation of rock. Mildsteel bolts should be at least 1 in. in dia and 10 ft long, provided the tunnel is large enough to permit insertion of rods of this length. Rockbolts must be installed with careful consideration for the jointing pattern of the rock.. They must also be installed in a more or less uniform and regular pattern so that when tensioned they will, with the surrounding rock,proce a homogeneous arch structure against the external stresses acting upon the excavation opening. Average spacing of the rockbolts, throughout the roof of the tunnel above the spring line, will vary from a minimum of about 12sq ft of rock per bolt to a maximum of 25 or more. When rockbolts are installed by the regular tunnel crew, a standard tunnel crew usually will install the bolts required for one full round of advance of 8ft in 30 to 40 min. If a two-man crew alone is installing bolts, they probably will average two bolts per hour.
(3)Pneumatically Applied Concrete—Shotcret or gunite, applied directly to the rock surface of the arched tunnel roof, is rapidly becoming accepted as an effective and economical means of ground support. It can be used in all types of fair to poor rock or firm earth provided the material will stand up without caving for a sufficient time to permit the sprayed concrete to gain its initial strength. Accelerating additives are which, when added to the concrete at the spray nozzle, will cause initial set to occur within 3to 10 min. after the mortar has been applied. The concrete is applied in thickness of 2to 6 in. Dry-process application usually proces better results than the wet process because it permits the placing of thicker layers, uses larger aggregates (maximum, 3/4 in.) and usually achieves a higher proction rate per hour per nozzle (to 5.0 cu yd. per hr). One of the economies which frequently can be achieved with pneumatically applied concrete reflects the fact that it can be applied readily to the tunnel roof ring the mucking cycle, thereby shortening the total time required to complete the 「round」.
TIMBER SUPPORT
Supports for the tunnel roof and sides may be required while driving. Conventionally, temporary timbering is often used ring driving and replaced later by permanent supports or lining. Permanent supports may be of timber too.
For permanent support, timber should be well seasoned and treated with preservative. It is easily framed on the job and quickly erected without use of special tools or equipment. For temporary support, in local stretches of bad ground while advancing the heading timbers are readily cut and framed to suit requirements.
Timber sets comprises several timbers forming a framework across the tunnel section. The commonest form for narrow tunnels is the 3-piece set, consisting of a cap (crossbar or header) supported on two posts. The batter of the posts is 1 to 1.5in per ft, which is usually sufficient to prevent the bottoms of the posts. From pushing inward unless side pressure is excessive and the bottom soft. Posts are usually of hardwood, round, with small end 5-in minimum diameter. The minimum thickness of the cap is usually 5-in with width from 6 to 8 in. Lagging, usually 2 in thick, may or may not be set on the sides and top.
In swelling ground the timber set usually has :batter blocks」 to prevent the displacement of the posts; where the bottom tends to heave, an inverted arch set may be used. The back (or roof) of the tunnel often stands better if arched, especially in wide tunnels. Where only the back requires support and the walls are strong, posts may be omitted and the arched timbers set in hitches out at the break-line of the arch. Size of timbers and interval between sets depend upon size of tunnel and pressures to be withstood. Swelling ground should not be close-lagged, but spaces left between adjacent pieces of lagging, through which pressure can be relieved.
Routine and speed of timbering depend largely on how close the timbering must be kept behind the face. If each round of advance must be supported at once, timbering becomes a part of the driving cycle. The first step after blasting is to scale the back; and , in loose ground, to hold the back ahead of the last set by forepoling, sliding booms or similar means, to protect men while mucking. After the round is mucked, the new set is erected, blocked in place and lagged if necessary, and the drills are set up for the new round. timbers can be standardized and a regular routine followed. Speed is gained by baving all materials and supplies at the face before work begins; timber for a compete set, blocks, wedges, lagging and tools, should be brought in with the crew. Where the timbering lags a considerable distance behind the face, a special timber crew is usually employed. With suitable scaffolding, work can proceed without interfering with driving operations. A movable scaffold, with a working deck several sets long and high enough to allow the tunnel cars to pass under it, may be advantageous.
抱歉 我也沒找到!!你亂編一個吧
⑤ 國外礦井水深度處理的現狀及參考文獻下載
我有兩個免費下載文獻的地址 現在在單位網不好 我搜半天沒搜出來 晚上給你吧 最好自己查 別人給的只是一兩篇 不知有用不還 已經給你發到郵箱里了 您看一下
⑥ InternationalJournalof Rock Mechanics&MiningSciences 采礦科學文獻翻譯求助,在線等
對長壁開采和穩定性分析的數值模擬
在一個煤礦的大門
1。景區簡介
該
inlongwallmines,stopevoidsarefilledbycave inroofrocks地雷。
屋頂的洞穴
gatesandchainpillars。
之間
roofboltingisoneofthemajor。
measuresforstabilisinggates。顯然,loadingtotherockboltsis
causedbythelongwallmining。因此,analysisoftheboltload
可以一般,
設計:實證,分析,
數值方法。
在empiricalmethods [ 3 ] 1–,designchartsareconstructedby
統計。
該
數失效。
帳戶。
分析
論[ 4 ]。theyareappropriateforlow stressconditionsinhard
岩石。insuchasite,
........................
真郁悶O(∩_∩)O
⑦ 露天煤礦安全開採的相關資料文獻有哪些
《煤礦開采學》
全面系統地闡述了煤礦開採的基本原理及方法,概括了我國煤礦生產建設的最新成果、經驗及可供借鑒的國外煤礦開采先進技術。內容包括採煤方法、准備方式及采區設計、開拓方式及礦井開采設計、礦井其他開采方法、露天開采等幾大部分。
《採煤概論》
系統地介紹了煤礦地質、礦井各生產環節和通風與安全等方面的基本知識,主要內容包括地質與礦圖、礦井開拓、井巷掘進、採煤方法、礦井通風與安全、礦井運輸與提升等。本書既是煤炭技工學校非採煤專業教材,也作為煤礦職工的培訓教材。
《煤礦特殊開采方法》
講述了煤炭地下開采引起的上覆岩層及地表移動的基本理論,建築物下、村莊下、鐵路下、水體下和承壓水上開採的相關規定、判別方法和應採取的技術措施;介紹了上行開採的條件及判別方法,深礦井開採的巷道布置、開采部署和礦壓控制對策,難採煤層開採的途徑,以及水力採煤、充填採煤及煤層氣開採的特色。
⑧ 誰有采礦設計的相關文獻(5000字左右)的中文版 和翻譯版啊,如果由我傾家盪產給分!
說的具體一點
⑨ 誰能幫我找個英文文獻 關於采礦地質煤的
http://www.ex.ac.uk/cornwall/academic_departments/csm/到這個網站看看。
⑩ 參考文獻
[1]弗化奇A P.牛頓力學.北京:人民教育出版社,1982
[2]王龍甫.彈性理論.北京:科學出版社,1979
[3]Da Vinci L.Testing the strength of iron wiresof variouslengths(Notebook,ca.1500).In:ParsonsWB.Engineersand Engineering in Renaissance.Baltimore:Williams and Wilkins,1939.661
[4]Hudson J A.Rock engineering systems:theory and practice.London:Ellis Horwood Limited.1992.4~5
[5]Galileo G.Two New Science.New York:Macmillian,1933.1~300
[6]Hudson J A,Crouch S,Fairhurst C.Soft,Stiff and Servo-controlled Testing Machines.Eng.Geol.,1972,6(3):155~189
[7]Von Karman.Festigkeitsversuche unter allseitigem,Druck.Zeitschr.Ver.Dentsch.Ing.,1911,55:1749~1757
[8]郭惠豐,傘桂蘭.粗晶大理岩的三軸殘余強度及蠕變原因.地下空間,1999,19(5):699~701
[9]Mogi K.Effect of the intermediate principal stress on rock failure.J.Geophys.Res.,1967,72(20):5117~5131
[10]Akai K,Mori H.Study on the failure mechanism of a sand-stone under combined compressive stresses.Trans.Jpn.Soc.Civ.Eng.,1967,147:11~24
[11]Mogi K.Failure criteria of rocks(study by a new triaxial compression technique).J.Soc.Material Sci.Jpn.,1971,20:143~150
[12]Shimada M.Mechanical behavior of rocks under high pressure conditions.Netherlands:A A Balkema,2000.4~16
[13]Griggs D T.Hydrolytic weakening of quartz and other silicates.Geophys.J.R.Astr.Soc.,1967,14:19~31
[14]Tullis T E,Tullis J.Experimental rock deformation techniques.In:Hobbs B E,Heard H C.Mineral and Rock Deformation:Laboratory Studies.Geophysics.,1986,Monograph.36:297~324.(Washington D C:American Geophysics Union.)
[15]Kern H,Karl F.Eine dreiaxial wirkende Gensteinspresse mit Heizvorrichtung.Bergbauwissenschaften,1969,19:90~92
[16]Kern H.Preferred orientation of experimentally deformed limestone,marble,quartzite and rock salt at differenttemperature and states of stress.Tectonophysics,1977,39:103~120
[17]Carter N L,Christie JM,GriggsD T.Experimental deformation and recrystallization of quartz.Journal of Geology.1964,72:687~733
[18]Shimada M.The method of compression test under high pressure in a cubic press and the strength of granite.Tectonophysics,1981,72:343~357
[19]Cook N G W,Hojem JP M.A rigid50-ton compression and tension testing machine.South Africa Mech.Eng.,1966,16:89~92
[20]Wawersik W R,Fairhurst C.A study of brittle rock fracture in laboratory compression experiments.Inter.J.Rock Mech.Min.Sci.,1970,7(6):561~575
[21]尤明慶.岩樣單軸壓縮的失穩破壞和試驗機載入性能.岩土力學,1998,19(3):43~49
[22]葛修潤,任建喜,蒲毅彬等.煤岩三軸細觀損傷演化規律的CT 動態試驗.岩石力學與工程學報,1999,18(5):497~502
[23]王恩元,何學秋.煤岩變形破裂電磁輻射的實驗研究.地球物理學報,2000,43(1):131~137
[24]肖紅飛,何學秋,馮濤等.煤岩動力災害力電耦合.北京:地質出版社,2005
[25]Yasuhara H,Marone C,Elsworth D.Fault zone restrengthening and frictional healing:the role of pressure.Journal ofGeophysical research,110,B06310,doi:10.1029/2004JB003327
[26]岳中琦.岩土細觀介質空間分布數字表述和相關力學數值分析的方法、應用和進展.岩石力學與工程學報,2006,26(5):875~888
[27]秦四清,李造鼎,張倬元等.岩石聲發射技術概論.成都:西南交通大學出版社,1993
[28]First Symposium on Rock Mechanics.Quarterly of the Corolado School of Mines,1956,51(3):Foreword
[29]馮樹仁,佘詩剛等譯,葛修潤校(布雷迪 B H G,布郎 E T著).地下采礦岩石力學.北京:煤炭工業出版社,1990
[30]鄭穎人,沈珠江.岩土塑性力學原理.重慶:中國人民解放軍後勤工程學院學報,1998
[31]李通林,譚學術,劉偉.礦山岩石力學.重慶:重慶大學出版社,1991.217~222
[32]謝和平.岩石和混凝土損傷力學.徐州:中國礦業大學出版社,1990
[33]華安增,張子新.層狀非連續岩體穩定學.徐州:中國礦業大學出版社,1997
[34]徐小荷,余靜.岩石破碎學.北京:煤炭工業出版社,1986
[35]范廣勤.岩石流變學.北京:煤炭工業出版社,1993
[36]繆協興,陳智純.軟岩力學.徐州:中國礦業大學出版社,1995
[37]何滿潮,景海河,孫曉明.軟岩工程力學.北京:科學出版社,2003
[38]趙陽升.岩石流體力學.北京:煤炭工業出版社,1994
[39]李賀,伊光志,許江等.岩石斷裂力學.重慶:重慶大學出版社,1988.92~97
[40]馮夏庭.智能岩石力學導論.北京:科學出版社,2000
[41]唐春安.岩石破裂過程的數值試驗.北京:科學出版社,2003
[42]周維垣,楊強.岩石力學數值計算方法.北京:中國電力出版社,2005
[43]楊志法,王思敬,馮紫良等.岩土工程反分析原理及應用.北京:地震出版社,2000
[44]姚衛星,余新陸,顏永平.脆性材料壓拉強度比的估計.見:清華大學博士後科學論文集.北京:清華大學出版社,1992.9~16
[45]王庚蓀,袁建新,吳玉山.多裂紋材料單軸壓縮破壞機制與強度.岩土力學,1992,13(4):1~13
[46]孔圓波.砂岩試樣裂紋擴展和宏觀斷裂的模型探討.中國礦業大學學報,1991,20(4):93~98
[47]Hoek E.Brittle fracture propagation in rock under compression.Inter.J.Fract.Mech.,1965,1(2):136~155
[48]俞茂宏,李躍明等.強度理論研究新進展(論文集).西安:西安交通大學出版社,1992
[49]楊光.關於「岩土類材料統一強度理論及其應用」一文的討論.岩土工程學報,1996,18(5):95~97
[50]俞茂宏.對「統一強度理論」討論的答復.岩土工程學報,1996,18(5):97~99
[51]卓越,梁紹暹,張善德等.礦物岩石學.北京:煤炭工業出版社,1994
[52]衛管一,張長俊.岩石學簡明教程.北京:地質出版社,1995.10~11,106~107
[53]馬志先,吳國忠,馬紹周譯(Moorhouse W W 著).岩石薄片研究入門.北京:地質出版社,1986.187,244,309
[54]李世平,馮震海等譯(巴拉G 著).岩石各向異性——理論與實驗室試驗.見:米勒 L.岩石力學.北京:煤炭工業出版社,1981,112~144
[55]崛部富男.岩石試料の形狀が壓縮強並びに引張さに及ぼす影響にっいて.東北礦山,1952,(7):21~24
[56]井上正康,木下重教等.岩石の壓縮強さ測定法.日本礦業會志,1968,84(965):1462~1465
[57]International Society for Rock Mechanics Commission on Standardization on Laboratory and Field Tests.Suggested methods for determining the uniaxial compressive strength and deformability of rock materials.Inter.J.Rock Mech.Min.Sci.,1979,16(2):135~140
[58]張劍峰等.岩土工程勘探設計手冊.北京:水利電力出版社,1992
[59]中華人民共和國地質礦產部.岩石物理力學性質試驗規程.北京:地質出版社,1995
[60]中華人民共和國水利部.水利水電工程岩石試驗規程.北京:水利水電出版社,2001.13
[61]中華人民共和國煤炭工業部.煤與岩石物理力學性質測定方法.北京:中國標准出版社,1988
[62]中華人民共和國建設部.工程岩體試驗方法標准.北京:中國計劃出版社,1999.15
[63]中華人民共和國地質礦產部.岩石物理力學性質試驗規程.北京:地質出版社,1995.66
[64]Fairhurst C E,Hudson J A.Draft ISRM suggested method for the complete stress-strain curve for the intact rock in uniaxial compression.Inter.J.Rock Mech.Min.Sci.,1999,36:279~289
[65]尤明慶,蘇承東.大理岩試樣的長度對單軸壓縮試驗的影響.岩石力學與工程學報,2004,23(22):3754~3760
[66]Fairhurst C E,Hudson J A.單軸壓縮試驗測定完整岩石應力-應變全程曲線ISRM 建議方法草案.岩石力學與工程學報,2000,19(6):802~808
[67]Kostak B,Bielenstein H U.Strength distribution in hard rock.Inter.J.Rock Mech.Min.Sci.,1971,8(4):501~521
[68]尤明慶,蘇承東,周英.不同煤塊的強度特性及回歸方法.岩石力學與工程學報,2003,22(12):2081~2085
[69]山口梅太郎.花こぅ岩の強度試驗にぉける試驗片の數につぃて.材料,1966,16(160):520~528
[70]鄭雨天,傅冰駿等譯(國際岩石力學學會實驗室和現場試驗標准化委員會著).岩石力學試驗建議方法.北京:煤炭工業出版社,1979
[71]Barton N.Scale effects or sample bias? In:Proceedings of the first international workshop on scale effects in rock masses.Netherlands:A A Balkema,1990.31~58
[72]Thuro K,Plinninger R J,Zäh S,et al.Scale effects in rock properties(Part1).In:Särkkä & Eloranta(eds.).Rock Mechanics-a challenge for society.Swets& Zeitlinger Lisse,2001.169~174
[73]齊慶新,毛德兵,范紹剛.直接單軸拉伸條件下煤的彈脆塑性分析.見:中國岩石力學與工程學會第七次學術大會論文集.北京:科學技術出版社,2004.181~185
[74]Okubo F,Fukui K.Complete stress~strain curves for various rock types in uniaxial tension.Inter.J.Rock Mech.Min.Sci.Geomech.Abstr.,1996,33(6):549~556
[75]王思敬,楊志法,傅冰駿.中國岩石力學與工程世紀成就.南京:河海大學出版社,2004