資料庫設計的概念模型
㈠ 資料庫設計時的概念數據模型一般用什麼圖表示
通過數據抽象,設計系統概念模型,一般為E-R模型
資料庫設計一般分6個階段:
1、需求分析:了解用戶的數據需求、處理需求、安全性及完整性要求;
2、概念設計:通過數據抽象,設計系統概念模型,一般為E-R模型;
3、邏輯結構設計:設計系統的模式和外模式,對於關系模型主要是基本表和視圖;
4、物理結構設計:設計數據的存儲結構和存取方法,如索引的設計;
5、系統實施:組織數據入庫、編制應用程序、試運行;
6、運行維護:系統投入運行,長期的維護工作。
㈡ 資料庫的概念模型是什麼其特點是什麼
資料庫的概念模型是面向對象資料庫系統是為了滿足新的資料庫應用需要而產生的新一代資料庫系統。面向對象是一種認識方法學,也是一種新的程序設計方法學。
資料庫概念模型實際上是現實世界到機器世界的一個中間層次。資料庫概念模型用於信息世界的建模,是現實世界到信息世界的第一層抽象,是資料庫設計人員進行資料庫設計的有力工具,也是資料庫設計人員和用戶之間進行交流的語言。
(2)資料庫設計的概念模型擴展閱讀:
建立數據概念模型,就是從數據的觀點出發,觀察系統中數據的採集、傳輸、處理、存儲、輸出等,經過分析、總結之後建立起來的一個邏輯模型,它主要是用於描述系統中數據的各種狀態。這個模型不關心具體的實現方式(例如如何存儲)和細節,而是主要關心數據在系統中的各個處理階段的狀態。 實際上,數據流圖也是一種數據概念模型。
㈢ 資料庫中 概念模型,數據結構模型和物理模型三大類的典型代表分別是什麼
概念模型:只是一種設計思想,設計E_R圖的思想
數據結構模型
:就是畫
E-R圖物理模型:就是做資料庫啦
㈣ 什麼是資料庫的概念設計,邏輯設計,物理設計,以及三者的關系
1.概念設計;對用戶要求描述的現實世界(可能是一個工廠、一個商場或者一個學校等),通過對其中住處的分類、聚集和概括,建立抽象的概念數據模型。這個概念模型應反映現實世界各部門的信息結構、信息流動情況、信息間的互相制約關系以及各部門對信息儲存、查詢和加工的要求等。所建立的模型應避開資料庫在計算機上的具體實現細節,用一種抽象的形式表示出來。以擴充的實體—(E-R模型)聯系模型方法為例,第一步先明確現實世界各部門所含的各種實體及其屬性、實體間的聯系以及對信息的制約條件等,從而給出各部門內所用信息的局部描述(在資料庫中稱為用戶的局部視圖)。第二步再將前面得到的多個用戶的局部視圖集成為一個全局視圖,即用戶要描述的現實世界的概念數據模型。
2.邏輯設計;主要工作是將現實世界的概念數據模型設計成資料庫的一種邏輯模式,即適應於某種特定資料庫管理系統所支持的邏輯數據模式。與此同時,可能還需為各種數據處理應用領域產生相應的邏輯子模式。這一步設計的結果就是所謂「邏輯資料庫」。
3.物理設計;根據特定資料庫管理系統所提供的多種存儲結構和存取方法等依賴於具體計算機結構的各項物理設計措施,對具體的應用任務選定最合適的物理存儲結構(包括文件類型、索引結構和數據的存放次序與位邏輯等)、存取方法和存取路徑等。這一步設計的結果就是所謂「物理資料庫」。
4.三者關系:由上到下,先要概念設計,接著邏輯設計,再是物理設計,一級一級設計。
㈤ 資料庫設計的概念模型描述的是
資料庫設計一般分6個階段:
1、需求分析:了解用戶的數據需求、處理需求、安回全性及完整答性要求;
2、概念設計:通過數據抽象,設計系統概念模型,一般為E-R模型;
3、邏輯結構設計:設計系統的模式和外模式,對於關系模型主要是基本表和視圖;
4、物理結構設計:設計數據的存儲結構和存取方法,如索引的設計;
5、系統實施:組織數據入庫、編制應用程序、試運行;
6、運行維護:系統投入運行,長期的維護工作。
概念設計 就是把現實世界的信息抽象為計算機信息的過程、產生E-R模型、
E-R模型描述的是 資料庫的邏輯結構、與C有關
邏輯設計 是根據概念設計產生的E-R模型描述的資料庫邏輯結構的具體轉換、結果產生關系模式、與A有關
物理設計 根據邏輯設計的結果確定採用何種資料庫管理系統、與B有關
實現階段 產生的是用dbms建立的各種資料庫對象及其數據、用戶的角度看到的只是數據和資料庫對象、與D有關
此題選C
㈥ 資料庫概念模型
一、航空物探資料庫定位
資料庫是信息系統的基礎和核心,把大量的數據信息按一定的模型組織起來存儲在資料庫中,提供數據維護、數據檢索等功能,使信息系統能方便、及時、准確地從資料庫中獲得所需的信息。因此,資料庫結構設計是信息系統開發的重中之重。
經分析航空物探數據具有空間性、海量性、多源性和多尺度的特點,這說明航空物探數據具有典型的空間數據的特點,可以採用空間數據管理方式進行管理。
ESRI公司的Geodatabase(空間資料庫)是採用標准關系資料庫技術來表現地理信息的面向對象的高級GIS數據模型,是建立在DBMS之上的統一的、智能化的空間數據模型,是以一組相關聯的表來表達地理要素之間關系、有效性規則和值域。對於多源、海量的航空物探數據,Geodatabase能在一個統一的模型框架下很好地解決多源數據一體化存儲的問題,和採用標准關系資料庫技術來表現海量航空物探數據的地理信息特性。Geodatabase引入了地理空間實體的行為、有效性規則和關系,在處理Geodatabase中對象時,對象的基本行為和必須滿足的規則無需通過程序編碼實現,只需根據需要擴展其有效性規則(Geodatabase面向對象的智能化特性),即可支持航空物探數據模型擴展的需要。
因此,航空物探資料庫是空間資料庫,在航空物探資料庫建模過程中,以空間數據建模為主導,統領屬性數據建模。
二、統一空間坐標框架
為了用數學語言描述地球,人們用規則的幾何形體來替代地球表面,從地球自然表面、大地水準面、旋轉橢球面直到用簡單數學函數表達的參考橢球體,以便通過地圖投影將三維曲面轉化成二維平面。由於地球表面不同地區的地形起伏差異很大,採用單一橢球體勢必會造成某地區的誤差小而其他地區誤差很大的結果。因此,在20世紀初不同國家或地區先後採用了逼近本國或本地區地球表面的橢球體,如中國的克拉索夫斯基橢球體,美國的海福特橢球體、英國的克拉克橢球體等。這又造成了目前世界各國的地理信息空間坐標框架不統一,空間數據信息難以共享被動局面。為此,在實現數字地球計劃中,必須規范和統一世界上不同國家和地區的地球參考橢球體。
在小區域表達地球表面時,通常採用平面的方式,即投影坐標系統。如何科學地選擇投影坐標,一般要根據具體的地學應用、地理區域和范圍、比例尺條件等因素來確定,不同的國家有著不同的規定。
通過對航空物探數據的坐標系統進行分析可知,航空物探圖件的坐標框架與國家對基本比例尺制圖的規定相一致,即小比例尺編圖採用Lambert雙標准緯線等角圓錐投影;中比例尺採用Gauss 6°帶的分帶投影;大比例尺採用Gauss 3°帶的分帶投影(表2-1);對於低緯度的海上作業區通常採用Mecator等角圓柱投影。地球橢球體分別採用1954北京坐標系的Krassovsky橢球參數、WGS84橢球參數和未來的國家2000坐標系的橢球參數。
表2-1 航空物探地理坐標數據的投影方式
傳統的航空物探數據是按測區管理的,根據測區的測量比例尺來確定相應的坐標框架;因此,勘探目標不同的測區測量比例尺是不一致的,地坐標框架也不同。航空物探資料庫要將不同測區、不同比例尺、不同坐標框架的數據集中管理和可視表達,若沒有統一的空間坐標框架,就不可能正確地表達全國航空物探數據。所以,面對如此復雜的多坐標框架的航空物探數據,如何確定科學合理的空間坐標框架,將全國的航空物探數據整合到統一的空間參考框架下,實現數據的統一存儲和數據間無縫拼接,是航空物探資料庫建設的關鍵所在,是組織和管理多維、多格式、大跨度、跨平台的航空物探數據和多目標數字制圖的數學基礎。
統一的空間坐標框架必須支持我國領土覆蓋的海域和陸域航空物探數據的存儲和表達。我國領土東西跨度達70°,南北達55°,顯然採用任何投影坐標系都是不合適的。Gauss 6°投影適合6°帶內空間數據表達,若全國航物探數據採用6°分帶表達,在高緯度地區會造成6°帶間數據裂縫問題;Lambert投影可滿足數據的無縫表達,但對大比例尺數據變形較大,無法滿足數據制圖的精度要求;Mecator投影也可滿足數據的無縫表達,低緯度地區也能滿足大比例尺數據制圖的精度要求,但在我國中高緯度區存在著嚴重變形問題。所以,航空物探數據模型採用地理坐標(無投影,圖2-1)格式存放,可根據實際應用的需要將航空物探數據變換到任何方式的投影坐標系統。
航空物探資料庫模型採用Beijing_1954地理坐標系,相關參數如下:
角度單位:°(0.017453292519943299rad)
零經線:格林尼治(0.000000000000000000)
基準:D_Beijing_1954
橢球:Krasovsky_1940
長軸半徑:6378245.000 m
短軸半徑:6356863.019 m
建立統一坐標框架是空間資料庫建設的一項基礎性工作,採用Beijing_1954 地理坐標系作為航空物探資料庫統一空間坐標框架具有以下優點。
圖2-1 統一空間坐標框架示意圖
(一)無縫空間數據存儲
統一空間坐標框架解決了復雜的航空物探數據的坐標系統、投影、比例尺等不統一的問題,實現同一性質的物探數據在同一個主題中進行管理。如全國的航磁異常數據可放在一個圖層上進行管理。
(二)適合多尺度表達
按測區管理的多尺度、多框架的航空物探數據是處於一個相對坐標系統中,各個測區間相對位置關系會發生錯位。採用統一的Beijing_1954地理坐標框架,恢復了各測區間正確的位置關系,實現不同尺度數據的集成和正確表達,易於多源異構空間數據的融合。
(三)大區域數據集成
我國海陸面積近1300×104km2,地域跨度較大。在進行小比例尺的航空物探編圖時,需要選用與之相適應的投影坐標;在陸地和海域進行大比例尺制圖時,同樣需要選用合適投影系統。航空物探制圖的實踐也證明了這一點。1995 年6 月由中國、加拿大、美國、愛爾蘭和俄羅斯等國科學家共同編制的1∶1000萬歐亞東北地區磁異常與大地構造圖,採用橫軸Mercator投影。中心編制的1∶500 萬全國航磁圖採用Lambert投影。2008 年,由中國和吉爾吉斯斯坦科學家編制的1∶100萬中吉天山金屬礦產成礦規律圖,採用Lambert投影,將兩個國家不同時期、不同尺度的數據進行了有效的集成,是地質、地球物理等綜合應用的典範。
隨著航空物探數據應用領域的不斷擴展,陸地、海域,甚至於洲際和全球航空物探數據的整體表達都需對坐標投影提出要求。採用統一的地理坐標框架的航空物探數據非常容易變換到指定的投影坐標框架,滿足多樣化的制圖要求。
三、要素類和對象類的劃分
Geodatabase空間資料庫模型結構(圖2-2)分為空間資料庫、要素數據集(Feature dataset)、要素類(Feature classes)、要素(Feature)4個層次。為了建立航空物探Geodatabase空間數據模型,我們依據Geodatabase模型關於要素類和對象類的劃分原則,結合相關的國家標准和地球物理行業標准,制定了《航空物探數據要素類和對象類劃分標准》,對航空物探數據進行數據分類。
圖2-2 空間資料庫模型結構
1)按照航空物探數據的空間特徵,將其劃分為5個要素數據集,即勘查項目概況要素數據集、基礎數據要素數據集、異常要素數據集、解釋要素數據集和評價要素數據集。
2)根據航空物探測量方法、數據處理過程以及推斷解釋方法和過程,進一步把航空物探數據劃分為若干要素類和對象類,定義了要素類的主題特徵和表達方式,確定子類和屬性域;定義對象類的結構和聯接欄位,建立了關系類。
3)定義要素類的內容、欄位名稱和存儲結構。在航空物探數據採集過程中,不同類型的數據采樣率不同,坐標數據采樣2次/s,重力場數據采樣2次/s,磁場數據采樣10次/s,這就造成了場值數據與坐標數據無法一一對應問題。若按場值數據采樣率內插坐標數據,將導致數據量成倍增長;若按坐標數據采樣率抽稀場值數據,將降低航空物探測量對地質體的分辨能力,影響測量效果。在綜合分析航空物探數據應用基礎上,提出了採用要素數據與屬性數據分置的方式,將測線坐標數據與地球物理場數據分離,分別建立獨立共享的航跡線數據要素類模型,磁場、重力場等數據對象類模型(圖2-3),很好地解決了航空物探數據的存儲問題。
圖2-3 要素數據與屬性數據分置示意圖
採用要素數據與屬性數據分置方式,不僅是基於航空物探數據屬性數據的多源性、不同采樣頻率等特點的考慮,還考慮到數據的綜合查詢和檢索的速度,特別是通過ArcSDE訪問空間資料庫的效率的問題。再者,對於大部分用戶來說,需求是屬性數據的綜合應用,因此在資料庫建模過程中,將屬性數據採用對象類的方式進行管理,不但提高了空間數據的操作能力,同時在ArcSDE的配置上採用直接訪問資料庫(對象類)方式,並且加快了數據查詢和統計的速度。
四、資料庫概念模型
用戶需求是資料庫建設的約束條件之一。航空物探數據的空間特性決定航空物探資料庫必須是空間資料庫,採用資料庫管理數據,利用GIS技術提供可視化服務,這是各個層次用戶的一致要求。因此,我們從現實世界出發,對航空物探數據的多源性、多尺度和不同采樣等問題進行了描述,提出了解決方案。此方案是不依賴於任何具體的硬體環境和資料庫管理系統(DBMS),建立了客觀反映現實世界的航空物探資料庫概念模型,把用戶需要管理的信息統一到整體概念結構中,表達了用戶需要。
在全面分析航空物探業務流程和數據流程,以及航空物探數據特性的基礎上,按照《航空物探數據要素類和對象類劃分標准》,以及空間實體點、線、面要素特徵的基本原則,對航空物探資料庫所涉及的實體進行歸類,劃分成12個主題。根據空間數據分主題表達的特點和航空物探空間數據坐標框架的定義,確定航空物探資料庫空間數據概念模型,明確各個主題的用途、數據來源、表達方式、空間參考、比例尺和精度等內容,按照ArcGIS定義空間資料庫的數據分層表達方式(圖2-4),完成航空物探資料庫概念模型設計(圖2-5)。
圖2-4 航空物探資料庫空間數據分層模型
圖2-5 航空物探資料庫空間數據概念模型
㈦ 為什麼在進行資料庫設計時要先進行概念模型設計
概念模型類似於工程設計藍圖。是物理設計的一個藍本,在概念模型中很容易標識出表與表之間的關系、表的主外鍵、表級層次、分組等內容。
如果沒有概念模型,而在設計時直接進行表的物理建表,就像沙堡一樣容易崩潰
㈧ 資料庫設計概念模型圖,邏輯模型圖分別是什麼
1.1.概念模型(E-R圖描述)
概念模型是對真實世界中問題域內的事物的描述,不是對軟體設計的描述。
表示概念模型最常用的是"實體-關系"圖。
E-R圖主要是由實體、屬性和關系三個要素構成的。在E-R圖中,使用了下面幾種基本的圖形符號。
實體,矩形
E/R圖三要素 屬性,橢圓形
關系,菱形
關系:一對一關系,一對多關系,多對多關系。
E/R圖中的子類(實體):
1.2.邏輯模型
邏輯數據模型反映的是系統分析設計人員對數據存儲的觀點,是對概念數據模型進一步的分解和細化。
1.3.物理模型
物理模型是對真實資料庫的描述。資料庫中的一些對象如下:表,視圖,欄位,數據類型、長度、主鍵、外鍵、索引、是否可為空,默認值。
概念模型到物理模型的轉換即是把概念模型中的對象轉換成物理模型的對象。
㈨ 資料庫概念模型的基本概述
把面向對象的方法和資料庫技術結合起來可以使資料庫系統的分析、設計最內大程度地與容人們對客觀世界的認識相一致。面向對象資料庫系統是為了滿足新的資料庫應用需要而產生的新一代資料庫系統。
資料庫概念模型實際上是現實世界到機器世界的一個中間層次。資料庫概念模型用於信息世界的建模,是現實世界到信息世界的第一層抽象,是資料庫設計人員進行資料庫設計的有力工具,也是資料庫設計人員和用戶之間進行交流的語言。建立數據概念模型,就是從數據的觀點出發,觀察系統中數據的採集、傳輸、處理、存儲、輸出等,經過分析、總結之後建立起來的一個邏輯模型,它主要是用於描述系統中數據的各種狀態。這個模型不關心具體的實現方式(例如如何存儲)和細節,而是主要關心數據在系統中的各個處理階段的狀態。 實際上,數據流圖也是一種數據概念模型。
㈩ 資料庫概念模型的作用
將系統需求分析得到的用戶需求抽象為信息結構過程。概念模型是整個資料庫設計的關鍵。概念模型最終要轉換為數據模型。