資料庫索引實驗
❶ 資料庫索引原理
資料庫索引原理如下:
使用索引可快速訪問資料庫表中的特定信息。如果想按特定職員的姓來查找人員,則與在表中搜索所有的行相比,索引有助於更快地獲取信息。
索引的實現通常使用B樹及其變種B+樹。在數據之外,資料庫系統還維護著滿足特定查找演算法的數據結構,這些數據結構以某種方式引用(指向)數據,這樣就可以在這些數據結構上實現高級查找演算法。
(1)資料庫索引實驗擴展閱讀:
對於有些列不應該創建索引。一般來說,不應該創建索引的的這些列具有下列特點:
1、查詢很少:
對於那些在查詢中很少使用或者參考的列不應該創建索引。這是因為,既然這些列很少使用到,因此有索引或者無索引,並不能提高查詢速度。相反,由於增加了索引,反而降低了系統的維護速度和增大了空間需求。
2、少數據值:
對於那些只有很少數據值的列也不應該增加索引。這是因為,由於這些列的取值很少,例如人事表的性別列,在查詢的結果中,結果集的數據行佔了表中數據行的很大比例,即需要在表中搜索的數據行的比例很大。增加索引,並不能明顯加快檢索速度。
3、定義類型:
對於那些定義為text, image和bit數據類型的列不應該增加索引。這是因為,這些列的數據量要麼相當大,要麼取值很少。
❷ 資料庫索引是什麼,有什麼用,怎麼用
1、資料庫索引是什麼,有什麼用
資料庫索引是對資料庫表中一列或多列的值進行排序的一種結構,使用索引可快速訪問資料庫表中的特定信息。如果想按特定職員的姓來查找他或她,則與在表中搜索所有的行相比,索引有助於更快地獲取信息。
索引的一個主要目的就是加快檢索表中數據的方法,亦即能協助信息搜索者盡快的找到符合限制條件的記錄ID的輔助數據結構。
2、資料庫索引的用法
當表中有大量記錄時,若要對表進行查詢,第一種搜索信息方式是全表搜索,是將所有記錄一一取出,和查詢條件進行一一對比,然後返回滿足條件的記錄,這樣做會消耗大量資料庫系統時間,並造成大量磁碟I/O操作;
第二種就是在表中建立索引,然後在索引中找到符合查詢條件的索引值,最後通過保存在索引中的ROWID(相當於頁碼)快速找到表中對應的記錄。
索引是一個單獨的、物理的資料庫結構,它是某個表中一列或若干列值的集合和相應的指向表中物理標識值的數據頁的邏輯指針清單。
(2)資料庫索引實驗擴展閱讀:
一、索引的原理:
對要查詢的欄位建立索引其實就是把該欄位按照一定的方式排序;建立的索引只對該欄位有用,如果查詢的欄位改變,那麼這個索引也就無效了,比如圖書館的書是按照書名的第一個字母排序的,那麼你想要找作者叫張三的就不能用改索引了;還有就是如果索引太多會降低查詢的速度。
二、資料庫索引的特點:
1、避免進行資料庫全表的掃描,大多數情況,只需要掃描較少的索引頁和數據頁,而不是查詢所有數據頁。而且對於非聚集索引,有時不需要訪問數據頁即可得到數據。
2、聚集索引可以避免數據插入操作,集中於表的最後一個數據頁面。
3、在某些情況下,索引可以避免排序操作。
❸ 資料庫中的索引是什麼意思
索引是一個單獨的、物理的資料庫結構,它是某個表中一列或若干列值的集合和相應的指向表中物理標識這些值的數據頁的邏輯指針清單。
索引提供指向存儲在表的指定列中的數據值的指針,然後根據您指定的排序順序對這些指針排序。資料庫使用索引的方式與您使用書籍中的索引的方式很相似:它搜索索引以找到特定值,然後順指針找到包含該值的行。
在資料庫關系圖中,您可以在選定表的「索引/鍵」屬性頁中創建、編輯或刪除每個索引類型。當保存索引所附加到的表,或保存該表所在的關系圖時,索引將保存在資料庫中。
索引與目錄的作用類似
❹ 資料庫索引的相關問題
在合適的列抄上建立索引 是會大襲大提高查詢的速度,但是有利就有弊,當一張表中有大量索引的時候,在進行dml操作的時候就會受影響,降低運行速度。
關於你對聚集索引的疑問:聚集索引根據數據行的鍵值在表或視圖中排序和存儲這些數據行。每個表只能有一個聚集索引,因為數據行本身只能按一個順序排序。
如果你還想建立index的話 只能是非聚集索引,有聚集索引的情況下再想建立第二個的話 是會報錯的。
lz應該考慮的問題是:為什麼index會提高查詢數據的速度,在表中那個列上建立索引是較優的。
關於「兩個聚集索引時,是不是會把主鍵的聚集索引刪掉」這類的問題 做個實驗就完全可以解決了
❺ 資料庫索引是什麼,有什麼優點和缺點
創建索引可以大大提高系統的性能:
第一,通過創建唯一性索引,可以保證資料庫表中每一行數據的唯一性。
第二,可以大大加快數據的檢索速度,這也是創建索引的最主要的原因。
第三,可以加速表和表之間的連接,特別是在實現數據的參考完整性方面特別有意義。
第四,在使用分組和排序 子句進行數據檢索時,同樣可以顯著減少查詢中分組和排序的時間。
第五,通過使用索引,可以在查詢的過程中,使用優化隱藏器,提高系統的性能。
❻ 建立資料庫索引的優缺點,分析一張表上如何建立索引
1、表的主鍵、外鍵必須有索引;
2、數據量超過300的表應該有索引;
3、經常與其他表進行連接的表,在連接欄位上應該建立索引;
4、經常出現在Where子句中的欄位,特別是大表的欄位,應該建立索引;
5、索引應該建在選擇性高的欄位上;
6、索引應該建在小欄位上,對於大的文本欄位甚至超長欄位,不要建索引;
7、復合索引的建立需要進行仔細分析;盡量考慮用單欄位索引代替:
A、正確選擇復合索引中的主列欄位,一般是選擇性較好的欄位;
B、復合索引的幾個欄位是否經常同時以AND方式出現在Where子句中?單欄位查詢是否極少甚至沒有?如果是,則可以建立復合索引;否則考慮單欄位索引;
C、如果復合索引中包含的欄位經常單獨出現在Where子句中,則分解為多個單欄位索引;
D、如果復合索引所包含的欄位超過3個,那麼仔細考慮其必要性,考慮減少復合的欄位;
E、如果既有單欄位索引,又有這幾個欄位上的復合索引,一般可以刪除復合索引;
8、頻繁進行數據操作的表,不要建立太多的索引;
9、刪除無用的索引,避免對執行計劃造成負面影響;
以上是一些普遍的建立索引時的判斷依據。一言以蔽之,索引的建立必須慎重,對每個索引的必要性都應該經過仔細分析,要有建立的依據。因為太多的索引與不充分、不正確的索引對性能都毫無益處:在表上建立的每個索引都會增加存儲開銷,索引對於插入、刪除、更新操作也會增加處理上的開銷。另外,過多的復合索引,在有單欄位索引的情況下,一般都是沒有存在價值的;相反,還會降低數據增加刪除時的性能,特別是對頻繁更新的表來說,負面影響更大。
只做參考,整理自網路。
❼ 資料庫SQL實驗報告:視圖與索引怎麼寫啊
如果是SQL Server的視圖與索引都會寫,但是實驗報告不會,不清楚報告要寫什麼。。。沒寫過。。。
❽ 資料庫索引優缺點
創建索引可以大大提高系統的性能:
第一,通過創建唯一性索引,可以保證資料庫表中每一行數據的唯一性。
第二,可以大大加快數據的檢索速度,這也是創建索引的最主要的原因。
第三,可以加速表和表之間的連接,特別是在實現數據的參考完整性方面特別有意義。
第四,在使用分組和排序 子句進行數據檢索時,同樣可以顯著減少查詢中分組和排序的時間。
第五,通過使用索引,可以在查詢的過程中,使用優化隱藏器,提高系統的性能。
增加索引也有許多不利的方面:
第一,創建索引和維護索引要耗費時間,這種時間隨著數據量的增加而增加。
第二,索引需要佔物理空間,除了數據表占數據空間之外,每一個索引還要佔一定的物理空間,如果要建立聚簇索引,那麼需要的空間就會更大。
第三,當對表中的數據進行增加、刪除和修改的時候,索引也要動態的維護,這樣就降低了數據的維護速度。
索引是建立在資料庫表中的某些列的上面。因此,在創建索引的時候,應該仔細考慮在哪些列上可以創建索引,在哪些列上不能創建索引。一般來說,應該在這些列上創建索引,例如:
在經常需要搜索的列上,可以加快搜索的速度;
在作為主鍵的列上,強制該列的唯一性和組織表中數據的排列結構;
在經常用在連接的列上,這 些列主要是一些外鍵,可以加快連接的速度;
在經常需要根據范圍進行搜索的列上創建索引,因為索引已經排序,其指定的范圍是連續的;
在經常需要排序的列上創 建索引,因為索引已經排序,這樣查詢可以利用索引的排序,加快排序查詢時間;
在經常使用在WHERE子句中的列上面創建索引,加快條件的判斷速度。
❾ 資料庫建立索引怎麼利用索引查詢
1.合理使用索引
索引是資料庫中重要的數據結構,它的根本目的就是為了提高查詢效率。現在大多數的資料庫產品都採用IBM最先提出的ISAM索引結構。
索引的使用要恰到好處,其使用原則如下:
在經常進行連接,但是沒有指定為外鍵的列上建立索引,而不經常連接的欄位則由優化器自動生成索引。
在頻繁進行排序或分組(即進行group by或order by操作)的列上建立索引。
在條件表達式中經常用到的不同值較多的列上建立檢索,在不同值少的列上不要建立索引。比如在雇員表的「性別」列上只有「男」與「女」兩個不同值,因此就無必要建立索引。如果建立索引不但不會提高查詢效率,反而會嚴重降低更新速度。
如果待排序的列有多個,可以在這些列上建立復合索引(compound index)。
使用系統工具。如Informix資料庫有一個tbcheck工具,可以在可疑的索引上進行檢查。在一些資料庫伺服器上,索引可能失效或者因為頻繁操作而 使得讀取效率降低,如果一個使用索引的查詢不明不白地慢下來,可以試著用tbcheck工具檢查索引的完整性,必要時進行修復。另外,當資料庫表更新大量 數據後,刪除並重建索引可以提高查詢速度。
(1)在下面兩條select語句中:
SELECT * FROM table1 WHERE field1<=10000 AND field1>=0;
SELECT * FROM table1 WHERE field1>=0 AND field1<=10000;
如果數據表中的數據field1都>=0,則第一條select語句要比第二條select語句效率高的多,因為第二條select語句的第一個條件耗費了大量的系統資源。
第一個原則:在where子句中應把最具限制性的條件放在最前面。
(2)在下面的select語句中:
SELECT * FROM tab WHERE a=… AND b=… AND c=…;
若有索引index(a,b,c),則where子句中欄位的順序應和索引中欄位順序一致。
第二個原則:where子句中欄位的順序應和索引中欄位順序一致。
——————————————————————————
以下假設在field1上有唯一索引I1,在field2上有非唯一索引I2。
——————————————————————————
(3) SELECT field3,field4 FROM tb WHERE field1='sdf' 快
SELECT * FROM tb WHERE field1='sdf' 慢[/cci]
因為後者在索引掃描後要多一步ROWID表訪問。
(4) SELECT field3,field4 FROM tb WHERE field1>='sdf' 快
SELECT field3,field4 FROM tb WHERE field1>'sdf' 慢
因為前者可以迅速定位索引。
(5) SELECT field3,field4 FROM tb WHERE field2 LIKE 'R%' 快
SELECT field3,field4 FROM tb WHERE field2 LIKE '%R' 慢,
因為後者不使用索引。
(6) 使用函數如:
SELECT field3,field4 FROM tb WHERE upper(field2)='RMN'不使用索引。
如果一個表有兩萬條記錄,建議不使用函數;如果一個表有五萬條以上記錄,嚴格禁止使用函數!兩萬條記錄以下沒有限制。
(7) 空值不在索引中存儲,所以
SELECT field3,field4 FROM tb WHERE field2 IS[NOT] NULL不使用索引。
(8) 不等式如
SELECT field3,field4 FROM tb WHERE field2!='TOM'不使用索引。
相似地,
SELECT field3,field4 FROM tb WHERE field2 NOT IN('M','P')不使用索引。
(9) 多列索引,只有當查詢中索引首列被用於條件時,索引才能被使用。
(10) MAX,MIN等函數,使用索引。
SELECT max(field2) FROM tb 所以,如果需要對欄位取max,min,sum等,應該加索引。
一次只使用一個聚集函數,如:
SELECT 「min」=min(field1), 「max」=max(field1) FROM tb
不如:SELECT 「min」=(SELECT min(field1) FROM tb) , 「max」=(SELECT max(field1) FROM tb)
(11) 重復值過多的索引不會被查詢優化器使用。而且因為建了索引,修改該欄位值時還要修改索引,所以更新該欄位的操作比沒有索引更慢。
(12) 索引值過大(如在一個char(40)的欄位上建索引),會造成大量的I/O開銷(甚至會超過表掃描的I/O開銷)。因此,盡量使用整數索引。 Sp_estspace可以計算表和索引的開銷。
(13) 對於多列索引,ORDER BY的順序必須和索引的欄位順序一致。
(14) 在sybase中,如果ORDER BY的欄位組成一個簇索引,那麼無須做ORDER BY。記錄的排列順序是與簇索引一致的。
(15) 多表聯結(具體查詢方案需要通過測試得到)
where子句中限定條件盡量使用相關聯的欄位,且盡量把相關聯的欄位放在前面。
SELECT a.field1,b.field2 FROM a,b WHERE a.field3=b.field3
field3上沒有索引的情況下:
對a作全表掃描,結果排序
對b作全表掃描,結果排序
結果合並。
對於很小的表或巨大的表比較合適。
field3上有索引
按照表聯結的次序,b為驅動表,a為被驅動表
對b作全表掃描
對a作索引范圍掃描
如果匹配,通過a的rowid訪問
(16) 避免一對多的join。如:
SELECT tb1.field3,tb1.field4,tb2.field2 FROM tb1,tb2 WHERE tb1.field2=tb2.field2 AND tb1.field2=『BU1032』 AND tb2.field2= 『aaa』
不如:
declare @a varchar(80)
SELECT @a=field2 FROM tb2 WHERE field2=『aaa』
SELECT tb1.field3,tb1.field4,@a FROM tb1 WHERE field2= 『aaa』
(16) 子查詢
用exists/not exists代替in/not in操作
比較:
SELECT a.field1 FROM a WHERE a.field2 IN(SELECT b.field1 FROM b WHERE b.field2=100)
SELECT a.field1 FROM a WHERE EXISTS( SELECT 1 FROM b WHERE a.field2=b.field1 AND b.field2=100)
SELECT field1 FROM a WHERE field1 NOT IN( SELECT field2 FROM b)
SELECT field1 FROM a WHERE NOT EXISTS( SELECT 1 FROM b WHERE b.field2=a.field1)
(17) 主、外鍵主要用於數據約束,sybase中創建主鍵時會自動創建索引,外鍵與索引無關,提高性能必須再建索引。
(18) char類型的欄位不建索引比int類型的欄位不建索引更糟糕。建索引後性能只稍差一點。
(19) 使用count(*)而不要使用count(column_name),避免使用count(DISTINCT column_name)。
(20) 等號右邊盡量不要使用欄位名,如:
SELECT * FROM tb WHERE field1 = field3
(21) 避免使用or條件,因為or不使用索引。
2.避免使用order by和group by字句。
因為使用這兩個子句會佔用大量的臨時空間(tempspace),如果一定要使用,可用視圖、人工生成臨時表的方法來代替。
如果必須使用,先檢查memory、tempdb的大小。
測試證明,特別要避免一個查詢里既使用join又使用group by,速度會非常慢!
3.盡量少用子查詢,特別是相關子查詢。因為這樣會導致效率下降。
一個列的標簽同時在主查詢和where子句中的查詢中出現,那麼很可能當主查詢中的列值改變之後,子查詢必須重新查詢一次。查詢嵌套層次越多,效率越低,因此應當盡量避免子查詢。如果子查詢不可避免,那麼要在子查詢中過濾掉盡可能多的行。
4.消除對大型錶行數據的順序存取
在 嵌套查詢中,對表的順序存取對查詢效率可能產生致命的影響。
比如採用順序存取策略,一個嵌套3層的查詢,如果每層都查詢1000行,那麼這個查詢就要查詢 10億行數據。
避免這種情況的主要方法就是對連接的列進行索引。
例如,兩個表:學生表(學號、姓名、年齡……)和選課表(學號、課程號、成績)。如果兩個 表要做連接,就要在「學號」這個連接欄位上建立索引。
還可以使用並集來避免順序存取。盡管在所有的檢查列上都有索引,但某些形式的where子句強迫優化器使用順序存取。
下面的查詢將強迫對orders表執行順序操作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008
雖然在customer_num和order_num上建有索引,但是在上面的語句中優化器還是使用順序存取路徑掃描整個表。因為這個語句要檢索的是分離的行的集合,所以應該改為如下語句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001
UNION
SELECT * FROM orders WHERE order_num=1008
這樣就能利用索引路徑處理查詢。
5.避免困難的正規表達式
MATCHES和LIKE關鍵字支持通配符匹配,技術上叫正規表達式。但這種匹配特別耗費時間。例如:SELECT * FROM customer WHERE zipcode LIKE 「98_ _ _」
即使在zipcode欄位上建立了索引,在這種情況下也還是採用順序掃描的方式。如果把語句改為SELECT * FROM customer WHERE zipcode >「98000」,在執行查詢時就會利用索引來查詢,顯然會大大提高速度。
另外,還要避免非開始的子串。例如語句:SELECT * FROM customer WHERE zipcode[2,3] >「80」,在where子句中採用了非開始子串,因而這個語句也不會使用索引。
6.使用臨時表加速查詢
把表的一個子集進行排序並創建臨時表,有時能加速查詢。它有助於避免多重排序操作,而且在其他方面還能簡化優化器的工作。例如:
SELECT cust.name,rcvbles.balance,……other COLUMNS
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>0
AND cust.postcode>「98000」
ORDER BY cust.name
如果這個查詢要被執行多次而不止一次,可以把所有未付款的客戶找出來放在一個臨時文件中,並按客戶的名字進行排序:
SELECT cust.name,rcvbles.balance,……other COLUMNS
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>;0
ORDER BY cust.name
INTO TEMP cust_with_balance
然後以下面的方式在臨時表中查詢:
SELECT * FROM cust_with_balance
WHERE postcode>「98000」
臨時表中的行要比主表中的行少,而且物理順序就是所要求的順序,減少了磁碟I/O,所以查詢工作量可以得到大幅減少。
注意:臨時表創建後不會反映主表的修改。在主表中數據頻繁修改的情況下,注意不要丟失數據。
7.用排序來取代非順序存取
非順序磁碟存取是最慢的操作,表現在磁碟存取臂的來回移動。SQL語句隱藏了這一情況,使得我們在寫應用程序時很容易寫出要求存取大量非順序頁的查詢。